Combinatorial properties of triangular partitions

Sergi Elizalde
(joint work with Alejandro B. Galván)

Dartmouth College

Seminar in Partition Theory, q-Series and Related Topics
Michigan Tech University, January 2024

Outline

(1) Background
(2) Characterizations of triangular partitions
(3) The triangular Young poset
(1) Bijections and efficient generation
(3) Generating functions for subsets of triangular partitions
(0) Triangular partitions inside a rectangle

1. Background

Partitions

A partition $\lambda=\lambda_{1} \lambda_{2} \ldots \lambda_{k}$ is a weakly decreasing sequence of positive integers.

Partitions

A partition $\lambda=\lambda_{1} \lambda_{2} \ldots \lambda_{k}$ is a weakly decreasing sequence of positive integers.

The Ferrers diagram of λ is the set of lattice points

$$
\left\{(a, b) \in \mathbb{N}^{2} \mid 1 \leq b \leq k, 1 \leq a \leq \lambda_{b}\right\}
$$

$\lambda=86331$

Partitions

A partition $\lambda=\lambda_{1} \lambda_{2} \ldots \lambda_{k}$ is a weakly decreasing sequence of positive integers.

The Ferrers diagram of λ is the set of lattice points

$$
\left\{(a, b) \in \mathbb{N}^{2} \mid 1 \leq b \leq k, 1 \leq a \leq \lambda_{b}\right\}
$$

$\lambda=86331$

The Young diagram of λ is the set of unit squares (called cells) whose north-east corners are the points in the Ferrers diagram.

Triangular partitions

Definition

A partition is triangular if its Ferrers diagram consists of the points in \mathbb{N}^{2} that lie on or below a line (called a cutting line).

$$
\tau=86531
$$

Triangular partitions

Definition

A partition is triangular if its Ferrers diagram consists of the points in \mathbb{N}^{2} that lie on or below a line (called a cutting line).

$$
\tau=86531
$$

$\Delta(n)=$ set of triangular partitions of n

$$
\Delta=\bigcup_{n \geq 0} \Delta(n)
$$

History of triangular partitions

- In the context of combinatorial number theory, they first appeared in connection to almost linear sequences (Boshernitzan and Fraenkel '81).

History of triangular partitions

- In the context of combinatorial number theory, they first appeared in connection to almost linear sequences (Boshernitzan and Fraenkel '81).
- They are closely related to digital straight lines, studied in computer vision (Bruckstein '90).

History of triangular partitions

- In the context of combinatorial number theory, they first appeared in connection to almost linear sequences (Boshernitzan and Fraenkel '81).
- They are closely related to digital straight lines, studied in computer vision (Bruckstein '90).
- From a combinatorial perspective, they were first considered in 1999 by Onn and Sturmfels, who defined them in any dimension and called them corner cuts.

History of triangular partitions

- In the context of combinatorial number theory, they first appeared in connection to almost linear sequences (Boshernitzan and Fraenkel '81).
- They are closely related to digital straight lines, studied in computer vision (Bruckstein '90).
- From a combinatorial perspective, they were first considered in 1999 by Onn and Sturmfels, who defined them in any dimension and called them corner cuts.
- Also in 1999, Corteel, Rémond, Schaeffer and Thomas gave a complicated expression for the generating function, and showed that there exist contants C, C^{\prime} such that

$$
C n \log n<|\Delta(n)|<C^{\prime} n \log n
$$

History of triangular partitions

- In the context of combinatorial number theory, they first appeared in connection to almost linear sequences (Boshernitzan and Fraenkel '81).
- They are closely related to digital straight lines, studied in computer vision (Bruckstein '90).
- From a combinatorial perspective, they were first considered in 1999 by Onn and Sturmfels, who defined them in any dimension and called them corner cuts.
- Also in 1999, Corteel, Rémond, Schaeffer and Thomas gave a complicated expression for the generating function, and showed that there exist contants C, C^{\prime} such that

$$
C n \log n<|\Delta(n)|<C^{\prime} n \log n
$$

- In 2023, Bergeron and Mazin coined the term triangular partitions and studied some of their combinatorial properties.

2. Characterizations of triangular partitions

Characterizations of triangular partitions

Given a partition λ, how can we tell if it is triangular?

Characterizations of triangular partitions

Given a partition λ, how can we tell if it is triangular?

Proposition (Bergeron, Mazin '23)

A partition λ is triangular if and only if

$$
\max _{c \in \lambda} \frac{\operatorname{leg}(c)}{\operatorname{arm}(c)+\operatorname{leg}(c)+1}<\min _{c \in \lambda} \frac{\operatorname{leg}(c)+1}{\operatorname{arm}(c)+\operatorname{leg}(c)+1}
$$

$$
\begin{aligned}
& \operatorname{leg}(c)=2 \\
& \operatorname{arm}(c)=3
\end{aligned}
$$

Characterizations of triangular partitions

We give a new characterization using convex hulls. For a set $S \subset \mathbb{N}^{2}$, let Conv(S) denote its convex hull.

Characterizations of triangular partitions

We give a new characterization using convex hulls. For a set $S \subset \mathbb{N}^{2}$, let Conv(S) denote its convex hull.

Proposition (E., Galván '23)

A partition λ is triangular if and only if $\operatorname{Conv}(\lambda) \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)=\emptyset$.

Characterizations of triangular partitions

We give a new characterization using convex hulls. For a set $S \subset \mathbb{N}^{2}$, let Conv(S) denote its convex hull.

Proposition (E., Galván '23)

A partition λ is triangular if and only if $\operatorname{Conv}(\lambda) \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)=\emptyset$.

Addable and removable cells

Definition

A cell of a triangular partition τ is removable if removing it from τ yields a triangular partition.

$$
\tau=86531
$$

Addable and removable cells

Definition

A cell of a triangular partition τ is removable if removing it from τ yields a triangular partition. A cell of the complement $\mathbb{N}^{2} \backslash \tau$ is addable if adding it to τ yields a triangular partition.

$$
\tau=86531
$$

Addable and removable cells

Definition

A cell of a triangular partition τ is removable if removing it from τ yields a triangular partition. A cell of the complement $\mathbb{N}^{2} \backslash \tau$ is addable if adding it to τ yields a triangular partition.

$$
\tau=86531
$$

Lemma (Bergeron, Mazin '23)

A nonempty triangular partition can have: one removable cell and two addable cells, two removable cells and one addable cell, or two removable cells and two addable cells.

Finding removable and addable cells

Proposition (E., Galván '23)

Two cells in a triangular partition τ are removable if and only if:

- they are consecutive vertices of $\operatorname{Conv}(\tau)$, and
- the line passing through them does not intersect $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$.

$$
\tau=75421
$$

two removable cells

Finding removable and addable cells

Proposition (E., Galván '23)

Two cells in a triangular partition τ are removable if and only if:

- they are consecutive vertices of $\operatorname{Conv}(\tau)$, and
- the line passing through them does not intersect $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$.

There is an analogous characterization for pairs of addable cells.

two removable cells two addable cells

Finding removable and addable cells

Proposition (E., Galván '23)

A cell c in a triangular partition τ is its only removable cell if and only if:

- c is a vertex of $\operatorname{Conv}(\tau)$,
- the line extending the edge of $\operatorname{Conv}(\tau)$ adjacent to c from the left intersects $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$ to the right of c,

one removable cell

Finding removable and addable cells

Proposition (E., Galván '23)

A cell c in a triangular partition τ is its only removable cell if and only if:

- c is a vertex of $\operatorname{Conv}(\tau)$,
- the line extending the edge of $\operatorname{Conv}(\tau)$ adjacent to c from the left intersects $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$ to the right of c, and
- the line extending the edge of $\operatorname{Conv}(\tau)$ adjacent to c from below intersects $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$ to the left of c.

one removable cell

Finding removable and addable cells

Proposition (E., Galván '23)

A cell c in a triangular partition τ is its only removable cell if and only if:

- c is a vertex of $\operatorname{Conv}(\tau)$,
- the line extending the edge of $\operatorname{Conv}(\tau)$ adjacent to c from the left intersects $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$ to the right of c, and
- the line extending the edge of $\operatorname{Conv}(\tau)$ adjacent to c from below intersects $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \tau\right)$ to the left of c.
There is an analogous characterization for a single addable cells.

one removable cell

An algorithm to determine triangularity

Proposition (E., Galván '23)

Let $\lambda \vdash n$ with k parts. Using the above characterization, we can determine whether λ is triangular (and if so, find its addable and removable cells) in time $\mathcal{O}(k)$.

An algorithm to determine triangularity

Proposition (E., Galván '23)

Let $\lambda \vdash n$ with k parts. Using the above characterization, we can determine whether λ is triangular (and if so, find its addable and removable cells) in time $\mathcal{O}(k)$.

Sketch of the algorithm:
(1) Use Graham's scan to find the vertices of $\operatorname{Conv}(\lambda)$ and $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)$.
(2) Perform a binary search on the boundary of $\operatorname{Conv}(\lambda)$ to look for a pair of removable cells.
For each edge, finding a point in $\mathbb{N}^{2} \backslash \lambda$ that lies below the line extending the edge tells us in which direction to keep searching.
(3) If no pair of removable cells is found, apply the same procedure to the boundary of $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)$ to find a pair of addable cells.

An algorithm to determine triangularity

Proposition (E., Galván '23)

Let $\lambda \vdash n$ with k parts. Using the above characterization, we can determine whether λ is triangular (and if so, find its addable and removable cells) in time $\mathcal{O}(k)$.

Sketch of the algorithm:
(1) Use Graham's scan to find the vertices of $\operatorname{Conv}(\lambda)$ and $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)$.
(2) Perform a binary search on the boundary of $\operatorname{Conv}(\lambda)$ to look for a pair of removable cells.
For each edge, finding a point in $\mathbb{N}^{2} \backslash \lambda$ that lies below the line extending the edge tells us in which direction to keep searching.
(3) If no pair of removable cells is found, apply the same procedure to the boundary of $\operatorname{Conv}\left(\mathbb{N}^{2} \backslash \lambda\right)$ to find a pair of addable cells.

For comparison, an algorithm based on the characterization of Bergeron-Mazin would take time $\mathcal{O}(n)$ just to determine triangularity.

3. The triangular Young poset

The triangular Young poset

Bergeron and Mazin considered the poset \mathbb{Y}_{Δ} of triangular partitions ordered by containment of their Young diagrams:

The triangular Young poset

Bergeron and Mazin considered the poset \mathbb{Y}_{Δ} of triangular partitions ordered by containment of their Young diagrams:

Covering relations:
$\tau \lessdot \nu \Longleftrightarrow \tau$ is obtained from ν by removing one cell.

The triangular Young poset

Bergeron and Mazin considered the poset \mathbb{Y}_{Δ} of triangular partitions ordered by containment of their Young diagrams:

Covering relations:
$\tau \lessdot \nu \Longleftrightarrow \tau$ is obtained from ν by removing one cell.
In particular, \mathbb{Y}_{Δ} is ranked by the size of the partitions.

Properties of the triangular Young poset

Lemma (Bergeron-Mazin '23)

The poset \mathbb{Y}_{Δ} has a planar Hasse diagram, and it is a lattice.

Properties of the triangular Young poset

Lemma (Bergeron-Mazin '23)

The poset \mathbb{Y}_{Δ} has a planar Hasse diagram, and it is a lattice.
To prove this, they define a moduli space of lines, where

- each point (r, s) represents the line $\mathrm{L}_{r, s}$,
- the lines through a lattice point are represented by a hyperbola, - the resulting regions are in bijection with triangular partitions.

Properties of the triangular Young poset

Lemma (Bergeron-Mazin '23)

The poset \mathbb{Y}_{Δ} has a planar Hasse diagram, and it is a lattice.
To prove this, they define a moduli space of lines, where

- each point (r, s) represents the line $\mathrm{L}_{r, s}$,
- the lines through a lattice point are represented by a hyperbola, - the resulting regions are in bijection with triangular partitions.

The join and the meet in \mathbb{Y}_{Δ}

Definition

A poset is a lattice if every pair of elements τ and ν has:

- a least upper bound, denoted by $\tau \vee \nu$ (called the join), and
- a greatest lower bound, denoted by $\tau \wedge \nu$ (called the meet).

The join and the meet in \mathbb{Y}_{Δ}

Definition

A poset is a lattice if every pair of elements τ and ν has:

- a least upper bound, denoted by $\tau \vee \nu$ (called the join), and
- a greatest lower bound, denoted by $\tau \wedge \nu$ (called the meet).

We can explicitly describe the join and the meet of elements of \mathbb{Y}_{Δ}.

The join and the meet in \mathbb{Y}_{Δ}

Definition

A poset is a lattice if every pair of elements τ and ν has:

- a least upper bound, denoted by $\tau \vee \nu$ (called the join), and
- a greatest lower bound, denoted by $\tau \wedge \nu$ (called the meet).

We can explicitly describe the join and the meet of elements of \mathbb{Y}_{Δ}.

Proposition (E., Galván '23)

For any $\tau, \nu \in \mathbb{Y}_{\Delta}$,

$$
\begin{aligned}
& \tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu), \\
& \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .
\end{aligned}
$$

The join and the meet in \mathbb{Y}_{Δ}

Proposition (E., Galván '23)

$$
\begin{aligned}
& \tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu), \\
& \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .
\end{aligned}
$$

Example: 86531

The join and the meet in \mathbb{Y}_{Δ}

Proposition (E., Galván '23)

$$
\begin{aligned}
& \tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu), \\
& \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .
\end{aligned}
$$

Example: $86531 \vee 433322111$

The join and the meet in \mathbb{Y}_{Δ}

Proposition (E., Galván '23)

$$
\begin{aligned}
& \tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu), \\
& \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .
\end{aligned}
$$

Example: $86531 \vee 433322111$

The join and the meet in \mathbb{Y}_{Δ}

Proposition (E., Galván '23)

$$
\begin{aligned}
& \tau \vee \nu=\mathbb{N}^{2} \cap \operatorname{Conv}(\tau \cup \nu), \\
& \tau \wedge \nu=\mathbb{N}^{2} \backslash\left(\mathbb{N}^{2} \cap \operatorname{Conv}\left(\mathbb{N}^{2} \backslash(\tau \cap \nu)\right)\right) .
\end{aligned}
$$

Example: $86531 \vee 433322111=876543211$.

The Möbius function of the poset \mathbb{Y}_{Δ}

Denote the Möbius function of \mathbb{Y}_{Δ} by μ.
Theorem (E., Galván '23)
Let $\tau, \nu \in \mathbb{Y}_{\Delta}$ such that $\tau \leq \nu$. Then
$\mu(\tau, \nu)= \begin{cases}1 \quad & \text { if either } \tau=\nu \text { or } \\ & \text { there exist } \zeta^{1} \neq \zeta^{2} \text { such that } \tau \lessdot \zeta^{1}, \zeta^{2} \text { and } \nu=\zeta^{1} \vee \zeta^{2}, \\ -1 & \text { if } \tau \lessdot \nu, \\ 0 \quad & \text { otherwise. }\end{cases}$

The Möbius function of the poset \mathbb{Y}_{Δ}

Denote the Möbius function of \mathbb{Y}_{Δ} by μ.

Theorem (E., Galván '23)

Let $\tau, \nu \in \mathbb{Y}_{\Delta}$ such that $\tau \leq \nu$. Then
$(1 \quad$ if either $\tau=\nu$ or
$\mu(\tau, \nu)=\left\{\begin{array}{l}\text { there exist } \zeta^{1} \neq \zeta^{2} \text { such that } \tau \lessdot \zeta^{1}, \zeta^{2} \text { and } \nu=\zeta^{1} \vee \zeta^{2},\end{array}\right.$ -1 if $\tau \lessdot \nu$, 0 otherwise.

$$
\mu(\tau, \nu)=1
$$

4. Encodings as balanced words and efficient generation

Balanced words

Definition

An binary word $w=w_{1} \ldots w_{\ell}$ over $\{0,1\}$ is balanced if in any two factors of w of the same length, the number of $1 s$ differs by no more than one;

Balanced words

Definition

An binary word $w=w_{1} \ldots w_{\ell}$ over $\{0,1\}$ is balanced if in any two factors of w of the same length, the number of $1 s$ differs by no more than one; that is,

$$
\left|\left(w_{i}+w_{i+1}+\cdots+w_{i+h-1}\right)-\left(w_{j}+w_{j+1}+\cdots+w_{j+h-1}\right)\right| \leq 1
$$

for any $h \leq \ell$ and $i, j \leq \ell-h+1$.

Balanced words

Definition

An binary word $w=w_{1} \ldots w_{\ell}$ over $\{0,1\}$ is balanced if in any two factors of w of the same length, the number of $1 s$ differs by no more than one; that is,

$$
\left|\left(w_{i}+w_{i+1}+\cdots+w_{i+h-1}\right)-\left(w_{j}+w_{j+1}+\cdots+w_{j+h-1}\right)\right| \leq 1
$$

for any $h \leq \ell$ and $i, j \leq \ell-h+1$.
Balanced words can also be defined as factors of Sturmian words.

Balanced words

Definition

An binary word $w=w_{1} \ldots w_{\ell}$ over $\{0,1\}$ is balanced if in any two factors of w of the same length, the number of $1 s$ differs by no more than one; that is,

$$
\left|\left(w_{i}+w_{i+1}+\cdots+w_{i+h-1}\right)-\left(w_{j}+w_{j+1}+\cdots+w_{j+h-1}\right)\right| \leq 1
$$

for any $h \leq \ell$ and $i, j \leq \ell-h+1$.
Balanced words can also be defined as factors of Sturmian words.
Let \mathcal{B} be the set of all balanced words, and \mathcal{B}_{ℓ} the set of those of length ℓ.

Balanced words

Definition

An binary word $w=w_{1} \ldots w_{\ell}$ over $\{0,1\}$ is balanced if in any two factors of w of the same length, the number of $1 s$ differs by no more than one; that is,

$$
\left|\left(w_{i}+w_{i+1}+\cdots+w_{i+h-1}\right)-\left(w_{j}+w_{j+1}+\cdots+w_{j+h-1}\right)\right| \leq 1
$$

for any $h \leq \ell$ and $i, j \leq \ell-h+1$.
Balanced words can also be defined as factors of Sturmian words.
Let \mathcal{B} be the set of all balanced words, and \mathcal{B}_{ℓ} the set of those of length ℓ.

Theorem (Lipatov '82)

$$
\left|\mathcal{B}_{\ell}\right|=1+\sum_{i=1}^{\ell}(\ell-i+1) \varphi(i)
$$

where φ denotes Euler's totient function.

Wide triangular partitions

Definition

A triangular partition is wide if it has a cutting line $L_{r, s}$ with $r>s$. $\Delta_{\text {wide }}=$ set of wide triangular partitions.

Wide triangular partitions

Definition

A triangular partition is wide if it has a cutting line $L_{r, s}$ with $r>s$. $\Delta_{\text {wide }}=$ set of wide triangular partitions.

Lemma

- A triangular partition is wide if and only if its parts are distinct.

Wide triangular partitions

Definition

A triangular partition is wide if it has a cutting line $L_{r, s}$ with $r>s$. $\Delta_{\text {wide }}=$ set of wide triangular partitions.

Lemma

- A triangular partition is wide if and only if its parts are distinct.
- For every triangular partition τ, either τ or its conjugate are wide.

Wide triangular partitions

Definition

A triangular partition is wide if it has a cutting line $L_{r, s}$ with $r>s$. $\Delta_{\text {wide }}=$ set of wide triangular partitions.

Lemma

- A triangular partition is wide if and only if its parts are distinct.
- For every triangular partition τ, either τ or its conjugate are wide. Both are wide if and only if $\tau=k(k-1) \ldots 21$ for some k (staircase).

First encoding of triangular partitions as balanced words

Given $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$, define

$$
\omega(\tau)=10^{\tau_{1}-\tau_{2}-1} 10^{\tau_{2}-\tau_{3}-1} \ldots 10^{\tau_{k-1}-\tau_{k}-1} 10^{\tau_{k}-1}
$$

First encoding of triangular partitions as balanced words

Given $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$, define

$$
\omega(86531)=10110101
$$

First encoding of triangular partitions as balanced words

Given $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$, define

$$
\omega(\tau)=10^{\tau_{1}-\tau_{2}-1} 10^{\tau_{2}-\tau_{3}-1} \ldots 10^{\tau_{k-1}-\tau_{k}-1} 10^{\tau_{k}-1}
$$

$$
\omega(86531)=10110101
$$

Proposition (E., Galván '23)

For every $k, \ell \geq 1$, the map ω is a bijection

$$
\begin{aligned}
&\left\{\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }} \mid \tau_{1}=\ell\right\} \\
& \longrightarrow\left\{w=w_{1} \ldots w_{\ell} \in \mathcal{B}_{\ell} \mid w \text { has } k \text { ones and } w_{1}=1\right\} .
\end{aligned}
$$

Second encoding of triangular partitions as balanced words

For $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$ with $k \geq 2$, let

$$
\begin{aligned}
\min (\tau) & =\tau_{k} \\
\mathcal{D}(\tau) & =\left\{\tau_{1}-\tau_{2}, \tau_{2}-\tau_{3}, \ldots, \tau_{k-1}-\tau_{k}\right\} \\
\operatorname{dif}(\tau) & =\min \mathcal{D}(\tau) \\
\operatorname{wrd}(\tau) & =w_{1} \ldots w_{k-1}, \quad \text { where } w_{i}=\tau_{i}-\tau_{i+1}-\operatorname{dif}(\tau) \text { for all } i .
\end{aligned}
$$

Second encoding of triangular partitions as balanced words

For $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$ with $k \geq 2$, let

$$
\min (\tau)=\tau_{k},
$$

$$
\begin{aligned}
\mathcal{D}(\tau) & =\left\{\tau_{1}-\tau_{2}, \tau_{2}-\tau_{3}, \ldots, \tau_{k-1}-\tau_{k}\right\} \\
\operatorname{dif}(\tau) & =\min \mathcal{D}(\tau)
\end{aligned}
$$

$$
\operatorname{wrd}(\tau)=w_{1} \ldots w_{k-1}, \quad \text { where } w_{i}=\tau_{i}-\tau_{i+1}-\operatorname{dif}(\tau) \text { for all } i .
$$

Example: $\tau=(12,9,7,4,1)$

$$
\begin{aligned}
\min (\tau) & =1 \\
\mathcal{D}(\tau) & =\{2,3\} \\
\operatorname{dif}(\tau) & =2 \\
\operatorname{wrd}(\tau) & =1011
\end{aligned}
$$

Second encoding of triangular partitions as balanced words

For $\tau=\tau_{1} \ldots \tau_{k} \in \Delta_{\text {wide }}$ with $k \geq 2$, let

$$
\min (\tau)=\tau_{k},
$$

$$
\begin{aligned}
\mathcal{D}(\tau) & =\left\{\tau_{1}-\tau_{2}, \tau_{2}-\tau_{3}, \ldots, \tau_{k-1}-\tau_{k}\right\} \\
\operatorname{dif}(\tau) & =\min \mathcal{D}(\tau)
\end{aligned}
$$

$$
\operatorname{wrd}(\tau)=w_{1} \ldots w_{k-1}, \quad \text { where } w_{i}=\tau_{i}-\tau_{i+1}-\operatorname{dif}(\tau) \text { for all } i
$$

Let $\chi=(\min , \operatorname{dif}, \mathrm{wrd})$.
Example: $\tau=(12,9,7,4,1)$

$$
\begin{aligned}
\min (\tau) & =1 \\
\mathcal{D}(\tau) & =\{2,3\} \\
\operatorname{dif}(\tau) & =2 \\
\operatorname{wrd}(\tau) & =1011 \\
\chi(\tau) & =(1,2,1011)
\end{aligned}
$$

Second encoding and efficient generation

Let \mathcal{B}^{0} denote the set of balanced words that contain at least one zero.

Theorem (E., Galván '23)

The map $\chi=(\mathrm{min}, \mathrm{dif}, \mathrm{wrd})$ is a bijection between the set of wide triangular partitions with at least two parts and the set

$$
\mathcal{T}=\left\{(m, d, w) \in \mathbb{N} \times \mathbb{N} \times \mathcal{B}^{0} \mid m \leq d+1 ; w 1 \in \mathcal{B}^{0} \text { if } m=d+1\right\}
$$

Second encoding and efficient generation

Let \mathcal{B}^{0} denote the set of balanced words that contain at least one zero.

Theorem (E., Galván '23)

The map $\chi=(\mathrm{min}$, dif, wrd $)$ is a bijection between the set of wide triangular partitions with at least two parts and the set

$$
\mathcal{T}=\left\{(m, d, w) \in \mathbb{N} \times \mathbb{N} \times \mathcal{B}^{0} \mid m \leq d+1 ; w 1 \in \mathcal{B}^{0} \text { if } m=d+1\right\}
$$

Theorem (E., Galván '23)

There is an algorithm that finds $|\Delta(n)|$ for $1 \leq n \leq N$ in time $\mathcal{O}\left(N^{5 / 2}\right)$.

Second encoding and efficient generation

Let \mathcal{B}^{0} denote the set of balanced words that contain at least one zero.

Theorem (E., Galván '23)

The map $\chi=(\mathrm{min}$, dif, wrd $)$ is a bijection between the set of wide triangular partitions with at least two parts and the set

$$
\mathcal{T}=\left\{(m, d, w) \in \mathbb{N} \times \mathbb{N} \times \mathcal{B}^{0} \mid m \leq d+1 ; w 1 \in \mathcal{B}^{0} \text { if } m=d+1\right\}
$$

Theorem (E., Galván '23)

There is an algorithm that finds $|\Delta(n)|$ for $1 \leq n \leq N$ in time $\mathcal{O}\left(N^{5 / 2}\right)$.
(1) Perform a depth first search through the tree of balanced words of length $\leq\lfloor\sqrt{2 N}\rfloor$. The children of a word w can be $w 0$ and/or $w 1$.
(2) For each w in the tree, search through the pairs (m, d) such that $(m, d, w) \in \mathcal{T}$ and the size of the corresponding partition is $\leq N$.
(3) Each triplet (m, d, w) accounts for two triangular partitions (conjugate of each other), unless it corresponds to the staircase partition.

The sequence $|\Delta(n)|$

This algorithm allows us to compute the first 10^{5} terms of the sequence $|\Delta(n)|$, compared to the 39 terms that had been previously computed.

The sequence $|\Delta(n)|$

This algorithm allows us to compute the first 10^{5} terms of the sequence $|\Delta(n)|$, compared to the 39 terms that had been previously computed.

The sequence $|\Delta(n)|$ and the bounds $C n \log n<|\Delta(n)|<C^{\prime} n \log n$ given by Corteel-Rémond-Schaeffer-Thomas ' 99.

The sequence $|\Delta(n)| /(n \log n)$

The sequence $|\Delta(n)| /(n \log n)$ seems to oscillate between 0.42 and 0.45 .

5. Generating functions

Generating functions for (subsets of) triangular partitions

Theorem (Corteel, Rémond, Schaeffer, Thomas '99)

$$
\sum_{n \geq 0}|\Delta(n)| z^{n}=\frac{1}{1-z}+\sum_{\operatorname{gcd}(a, b)=1} \sum_{\substack{0 \leq j<a \\ 0 \leq i<b}} \sum_{1 \leq m<k} z^{N_{\Delta}(a, b, k, m, i, j)}
$$

where

$$
\begin{aligned}
N_{\Delta}(a, b, k, m, i, j)= & (k-1)\left(\frac{(a+1)(b+1)}{2}-1\right)+\binom{k-1}{2} a b+i j \\
& +i(k-1) a+j(k-1) b+T(a, b, j)+T(b, a, i)+m
\end{aligned}
$$

and $T(a, b, j)=\sum_{r=1}^{j}(\lfloor r b / a\rfloor+1)$.

Generating functions for (subsets of) triangular partitions

Theorem (Corteel, Rémond, Schaeffer, Thomas '99)

$$
\sum_{n \geq 0}|\Delta(n)| z^{n}=\frac{1}{1-z}+\sum_{\operatorname{gcd}(a, b)=1} \sum_{\substack{0 \leq j<a \\ 0 \leq i<b}} \sum_{1 \leq m<k} z^{N_{\Delta}(a, b, k, m, i, j)}
$$

where

$$
\begin{aligned}
N_{\Delta}(a, b, k, m, i, j)= & (k-1)\left(\frac{(a+1)(b+1)}{2}-1\right)+\binom{k-1}{2} a b+i j \\
& +i(k-1) a+j(k-1) b+T(a, b, j)+T(b, a, i)+m
\end{aligned}
$$

and $T(a, b, j)=\sum_{r=1}^{j}(\lfloor r b / a\rfloor+1)$.

We can give similar generating functions for partitions with a given number (i.e. one or two) of removable and addable cells.

One removable vs two removable cells

Let $\Delta_{1}(n), \Delta_{2}(n) \subset \Delta(n)$ denote the subsets of partitions with one and two removable cells, respectively.

One removable vs two removable cells

Let $\Delta_{1}(n), \Delta_{2}(n) \subset \Delta(n)$ denote the subsets of partitions with one and two removable cells, respectively.

Open questions:

- Is $\left|\Delta_{2}(n)\right|>\left|\Delta_{1}(n)\right|$ for all $n \geq 9$?

One removable vs two removable cells

Let $\Delta_{1}(n), \Delta_{2}(n) \subset \Delta(n)$ denote the subsets of partitions with one and two removable cells, respectively.

Open questions:

- Is $\left|\Delta_{2}(n)\right|>\left|\Delta_{1}(n)\right|$ for all $n \geq 9$?
- Do the local maxima of $\left|\Delta_{1}(n)\right|$ and the local minima of $\left|\Delta_{2}(n)\right|$ always occur when $n \equiv 2(\bmod 3)$?

6. Triangular partitions inside a rectangle

Triangular partitions inside a square

$\Delta^{h \times \ell}=$ set of triangular partitions whose Young diagram fits inside an $h \times \ell$ rectangle (i.e., with $\leq h$ parts and largest part $\leq \ell$).

Triangular partitions inside a square

$\Delta^{h \times \ell}=$ set of triangular partitions whose Young diagram fits inside an $h \times \ell$ rectangle (i.e., with $\leq h$ parts and largest part $\leq \ell$).

Theorem (E., Galván '23)

$$
\left|\Delta^{\ell \times \ell}\right|=1+\sum_{i=1}^{\ell}\binom{\ell-i+2}{2} \varphi(i)
$$

Triangular partitions inside a square

$\Delta^{h \times \ell}=$ set of triangular partitions whose Young diagram fits inside an $h \times \ell$ rectangle (i.e., with $\leq h$ parts and largest part $\leq \ell$).

Theorem (E., Galván '23)

$$
\left|\Delta^{\ell \times \ell}\right|=1+\sum_{i=1}^{\ell}\binom{\ell-i+2}{2} \varphi(i)
$$

Proof idea:

- Use our first encoding as balanced words.
- Apply Lipatov's enumeration formula for balanced words.

Triangular partitions inside a square

We can also give a direct combinatorial proof:

Triangular partitions inside a square

We can also give a direct combinatorial proof:

- Construct a bijection between triangular partitions and

$$
Q=\left\{(a, b, d, e) \in \mathbb{N}^{4} \mid d<a, \operatorname{gcd}(d, e)=1\right\}
$$

Triangular partitions inside a square

We can also give a direct combinatorial proof:

- Construct a bijection between triangular partitions and

$$
Q=\left\{(a, b, d, e) \in \mathbb{N}^{4} \mid d<a, \operatorname{gcd}(d, e)=1\right\}
$$

- Characterize the tuples (a, b, d, e) coming from partitions in $\Delta^{\ell \times \ell}$.

Triangular partitions inside a square

We can also give a direct combinatorial proof:

- Construct a bijection between triangular partitions and

$$
Q=\left\{(a, b, d, e) \in \mathbb{N}^{4} \mid d<a, \operatorname{gcd}(d, e)=1\right\}
$$

- Characterize the tuples (a, b, d, e) coming from partitions in $\Delta^{\ell \times \ell}$.
- For fixed $d<e$ with $\operatorname{gcd}(d, e)=1$, the tuples of the form (a, b, d, e) and $(a, b, e, e-d)$ are in bijection with the lattice points inside a certain triangle, which are counted by $\binom{\ell-e+2}{2}$.

Triangular partitions inside a rectangle

The above argument also gives a new combinatorial proof of Lipatov's enumeration formula for balanced words.

Triangular partitions inside a rectangle

The above argument also gives a new combinatorial proof of Lipatov's enumeration formula for balanced words.

We have similar formulas for other rectangles:

$$
\begin{aligned}
& \left|\Delta^{\ell \times(\ell-1)}\right|=\frac{1}{2}+\frac{1}{2} \sum_{i=1}^{\ell}(\ell-i+1)^{2} \varphi(i) \\
& \left|\Delta^{\ell \times(\ell-2)}\right|=1-\ell+\sum_{i=1}^{\ell}\left(\binom{\ell-i+1}{2}+\frac{1}{2}\right) \varphi(i) .
\end{aligned}
$$

But not for the general case $\left|\Delta^{h \times \ell}\right|$.

Further research

- Triangular Young tableaux.

Further research

- Triangular Young tableaux.

6					
2	5	8			
1	3	4	7	9	

- Pyramidal partitions in higher dimensions (corner cuts).

Further research

- Triangular Young tableaux.

6					
2	5	8			
1	3	4	7	9	

- Pyramidal partitions in higher dimensions (corner cuts).
- Convex and concave partitions.

Further research

- Triangular Young tableaux.

6					
2	5	8			
1	3	4	7	9	

- Pyramidal partitions in higher dimensions (corner cuts).
- Convex and concave partitions.

Thank you!

