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1. Background
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Partitions

A partition λ = λ1λ2 . . . λk is a weakly decreasing sequence of positive
integers.

The Ferrers diagram of λ is the set of lattice points

{(a, b) ∈ N2 | 1 ≤ b ≤ k , 1 ≤ a ≤ λb}.

λ = 86331

The Young diagram of λ is the set of unit squares (called cells) whose
north-east corners are the points in the Ferrers diagram.
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Triangular partitions

De�nition

A partition is triangular if its Ferrers diagram consists of the points in N2

that lie on or below a line (called a cutting line).

Lr ,s

s

r

τ = 86531

∆(n) = set of triangular partitions of n ∆ =
⋃
n≥0

∆(n)
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History of triangular partitions

In the context of combinatorial number theory, they �rst appeared in
connection to almost linear sequences (Boshernitzan and Fraenkel '81).

They are closely related to digital straight lines, studied in computer
vision (Bruckstein '90).

From a combinatorial perspective, they were �rst considered in 1999
by Onn and Sturmfels, who de�ned them in any dimension and called
them corner cuts.

Also in 1999, Corteel, Rémond, Schae�er and Thomas gave a
complicated expression for the generating function, and showed that
there exist contants C ,C ′ such that

C n log n < |∆(n)| < C ′n log n.

In 2023, Bergeron and Mazin coined the term triangular partitions and
studied some of their combinatorial properties.
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2. Characterizations of triangular partitions
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Characterizations of triangular partitions

Given a partition λ, how can we tell if it is triangular?

Proposition (Bergeron, Mazin '23)

A partition λ is triangular if and only if

max
c∈λ

leg(c)

arm(c) + leg(c) + 1
< min

c∈λ

leg(c) + 1

arm(c) + leg(c) + 1
.

c

leg(c) = 2

arm(c) = 3
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Characterizations of triangular partitions

We give a new characterization using convex hulls. For a set S ⊂ N2, let
Conv(S) denote its convex hull.

Proposition (E., Galván '23)

A partition λ is triangular if and only if Conv(λ) ∩ Conv(N2 \ λ) = ∅.
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Addable and removable cells

De�nition

A cell of a triangular partition τ is removable if removing it from τ yields a
triangular partition.

A cell of the complement N2 \ τ is addable if adding
it to τ yields a triangular partition.

τ = 86531
removable

addable

Lemma (Bergeron, Mazin '23)

A nonempty triangular partition can have: one removable cell and two

addable cells, two removable cells and one addable cell,

or two removable cells and two addable cells.
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Finding removable and addable cells

Proposition (E., Galván '23)

Two cells in a triangular partition τ are removable if and only if:

they are consecutive vertices of Conv(τ), and

the line passing through them does not intersect Conv(N2 \ τ).

There is an analogous characterization for pairs of addable cells.

τ = 75421 two removable cells
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Finding removable and addable cells

Proposition (E., Galván '23)

A cell c in a triangular partition τ is its only removable cell if and only if:

c is a vertex of Conv(τ),

the line extending the edge of Conv(τ) adjacent to c from the left
intersects Conv(N2 \ τ) to the right of c ,

and

the line extending the edge of Conv(τ) adjacent to c from below
intersects Conv(N2 \ τ) to the left of c .

There is an analogous characterization for a single addable cells.

one removable cell
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An algorithm to determine triangularity

Proposition (E., Galván '23)

Let λ ⊢ n with k parts. Using the above characterization, we can determine
whether λ is triangular (and if so, �nd its addable and removable cells) in
time O(k).

Sketch of the algorithm:

1 Use Graham's scan to �nd the vertices of Conv(λ) and Conv(N2 \ λ).
2 Perform a binary search on the boundary of Conv(λ) to look for a pair

of removable cells.
For each edge, �nding a point in N2 \ λ that lies below the line
extending the edge tells us in which direction to keep searching.

3 If no pair of removable cells is found, apply the same procedure to the
boundary of Conv(N2 \ λ) to �nd a pair of addable cells.

For comparison, an algorithm based on the characterization of
Bergeron�Mazin would take time O(n) just to determine triangularity.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 13 / 35



An algorithm to determine triangularity

Proposition (E., Galván '23)

Let λ ⊢ n with k parts. Using the above characterization, we can determine
whether λ is triangular (and if so, �nd its addable and removable cells) in
time O(k).

Sketch of the algorithm:

1 Use Graham's scan to �nd the vertices of Conv(λ) and Conv(N2 \ λ).
2 Perform a binary search on the boundary of Conv(λ) to look for a pair

of removable cells.
For each edge, �nding a point in N2 \ λ that lies below the line
extending the edge tells us in which direction to keep searching.

3 If no pair of removable cells is found, apply the same procedure to the
boundary of Conv(N2 \ λ) to �nd a pair of addable cells.

For comparison, an algorithm based on the characterization of
Bergeron�Mazin would take time O(n) just to determine triangularity.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 13 / 35



An algorithm to determine triangularity

Proposition (E., Galván '23)

Let λ ⊢ n with k parts. Using the above characterization, we can determine
whether λ is triangular (and if so, �nd its addable and removable cells) in
time O(k).

Sketch of the algorithm:

1 Use Graham's scan to �nd the vertices of Conv(λ) and Conv(N2 \ λ).
2 Perform a binary search on the boundary of Conv(λ) to look for a pair

of removable cells.
For each edge, �nding a point in N2 \ λ that lies below the line
extending the edge tells us in which direction to keep searching.

3 If no pair of removable cells is found, apply the same procedure to the
boundary of Conv(N2 \ λ) to �nd a pair of addable cells.

For comparison, an algorithm based on the characterization of
Bergeron�Mazin would take time O(n) just to determine triangularity.
Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 13 / 35



3. The triangular Young poset
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The triangular Young poset

Bergeron and Mazin considered the poset Y∆ of triangular partitions
ordered by containment of their Young diagrams:

ϵ

1

11 2

111 21 3

1111 211 31 4

11111 2111 221 32 41 5

111111 21111 2211 321 42 51 6

Covering relations:

τ ⋖ ν ⇐⇒ τ is obtained from ν by removing one cell.

In particular, Y∆ is ranked by the size of the partitions.
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Properties of the triangular Young poset

Lemma (Bergeron�Mazin '23)

The poset Y∆ has a planar Hasse diagram, and it is a lattice.

To prove this, they de�ne a moduli space of lines, where

each point (r , s) represents the line Lr ,s ,
the lines through a lattice point are represented by a hyperbola,
the resulting regions are in bijection with triangular partitions.

r

s

ϵ

Source: Bergeron�Mazin
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The join and the meet in Y∆

De�nition

A poset is a lattice if every pair of elements τ and ν has:

a least upper bound, denoted by τ ∨ ν (called the join), and

a greatest lower bound, denoted by τ ∧ ν (called the meet).

We can explicitly describe the join and the meet of elements of Y∆.

Proposition (E., Galván '23)

For any τ, ν ∈ Y∆,

τ ∨ ν = N2 ∩ Conv(τ ∪ ν),

τ ∧ ν = N2 \
(
N2 ∩ Conv

(
N2 \ (τ ∩ ν)

))
.
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The join and the meet in Y∆
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τ ∨ ν = N2 ∩ Conv(τ ∪ ν),

τ ∧ ν = N2 \
(
N2 ∩ Conv

(
N2 \ (τ ∩ ν)

))
.

Example: 86531

∨ 433322111 = 876543211

.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 18 / 35



The join and the meet in Y∆

Proposition (E., Galván '23)

τ ∨ ν = N2 ∩ Conv(τ ∪ ν),

τ ∧ ν = N2 \
(
N2 ∩ Conv

(
N2 \ (τ ∩ ν)

))
.

Example: 86531 ∨ 433322111

= 876543211

.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 18 / 35



The join and the meet in Y∆

Proposition (E., Galván '23)

τ ∨ ν = N2 ∩ Conv(τ ∪ ν),

τ ∧ ν = N2 \
(
N2 ∩ Conv

(
N2 \ (τ ∩ ν)

))
.

Example: 86531 ∨ 433322111

= 876543211

.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 18 / 35



The join and the meet in Y∆

Proposition (E., Galván '23)

τ ∨ ν = N2 ∩ Conv(τ ∪ ν),

τ ∧ ν = N2 \
(
N2 ∩ Conv

(
N2 \ (τ ∩ ν)

))
.

Example: 86531 ∨ 433322111 = 876543211.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 18 / 35



The Möbius function of the poset Y∆

Denote the Möbius function of Y∆ by µ.

Theorem (E., Galván '23)

Let τ, ν ∈ Y∆ such that τ ≤ ν. Then

µ(τ, ν) =


1 if either τ = ν or

there exist ζ1 ̸= ζ2 such that τ ⋖ ζ1, ζ2 and ν = ζ1 ∨ ζ2,

−1 if τ ⋖ ν,

0 otherwise.

τ

ζ1 ζ2

ν

µ(τ, ν) = 1
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4. Encodings as balanced words and e�cient
generation
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Balanced words

De�nition

An binary word w = w1 . . .wℓ over {0, 1} is balanced if in any two factors
of w of the same length, the number of 1s di�ers by no more than one;

that is,

|(wi + wi+1 + · · ·+ wi+h−1)− (wj + wj+1 + · · ·+ wj+h−1)| ≤ 1

for any h ≤ ℓ and i , j ≤ ℓ− h + 1.

Balanced words can also be de�ned as factors of Sturmian words.

Let B be the set of all balanced words, and Bℓ the set of those of length ℓ.

Theorem (Lipatov '82)

|Bℓ| = 1+
ℓ∑

i=1

(ℓ− i + 1)φ(i),

where φ denotes Euler's totient function.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 21 / 35



Balanced words

De�nition

An binary word w = w1 . . .wℓ over {0, 1} is balanced if in any two factors
of w of the same length, the number of 1s di�ers by no more than one;
that is,

|(wi + wi+1 + · · ·+ wi+h−1)− (wj + wj+1 + · · ·+ wj+h−1)| ≤ 1

for any h ≤ ℓ and i , j ≤ ℓ− h + 1.

Balanced words can also be de�ned as factors of Sturmian words.

Let B be the set of all balanced words, and Bℓ the set of those of length ℓ.

Theorem (Lipatov '82)

|Bℓ| = 1+
ℓ∑

i=1

(ℓ− i + 1)φ(i),

where φ denotes Euler's totient function.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 21 / 35



Balanced words

De�nition

An binary word w = w1 . . .wℓ over {0, 1} is balanced if in any two factors
of w of the same length, the number of 1s di�ers by no more than one;
that is,

|(wi + wi+1 + · · ·+ wi+h−1)− (wj + wj+1 + · · ·+ wj+h−1)| ≤ 1

for any h ≤ ℓ and i , j ≤ ℓ− h + 1.

Balanced words can also be de�ned as factors of Sturmian words.

Let B be the set of all balanced words, and Bℓ the set of those of length ℓ.

Theorem (Lipatov '82)

|Bℓ| = 1+
ℓ∑

i=1

(ℓ− i + 1)φ(i),

where φ denotes Euler's totient function.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 21 / 35



Balanced words

De�nition

An binary word w = w1 . . .wℓ over {0, 1} is balanced if in any two factors
of w of the same length, the number of 1s di�ers by no more than one;
that is,

|(wi + wi+1 + · · ·+ wi+h−1)− (wj + wj+1 + · · ·+ wj+h−1)| ≤ 1

for any h ≤ ℓ and i , j ≤ ℓ− h + 1.

Balanced words can also be de�ned as factors of Sturmian words.

Let B be the set of all balanced words, and Bℓ the set of those of length ℓ.

Theorem (Lipatov '82)

|Bℓ| = 1+
ℓ∑

i=1

(ℓ− i + 1)φ(i),

where φ denotes Euler's totient function.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 21 / 35



Balanced words

De�nition

An binary word w = w1 . . .wℓ over {0, 1} is balanced if in any two factors
of w of the same length, the number of 1s di�ers by no more than one;
that is,

|(wi + wi+1 + · · ·+ wi+h−1)− (wj + wj+1 + · · ·+ wj+h−1)| ≤ 1

for any h ≤ ℓ and i , j ≤ ℓ− h + 1.

Balanced words can also be de�ned as factors of Sturmian words.

Let B be the set of all balanced words, and Bℓ the set of those of length ℓ.

Theorem (Lipatov '82)

|Bℓ| = 1+
ℓ∑

i=1

(ℓ− i + 1)φ(i),

where φ denotes Euler's totient function.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 21 / 35



Wide triangular partitions

De�nition

A triangular partition is wide if it has a cutting line Lr ,s with r > s.
∆wide = set of wide triangular partitions.

Lr ,s

s = 6.15

r = 9.9

Lemma

A triangular partition is wide if and only if its parts are distinct.

For every triangular partition τ , either τ or its conjugate are wide.

Both are wide if and only if τ = k(k − 1) . . . 21 for some k (staircase).
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First encoding of triangular partitions as balanced words

Given τ = τ1 . . . τk ∈ ∆wide, de�ne

ω(τ) = 10τ1−τ2−110τ2−τ3−1 . . . 10τk−1−τk−110τk−1.

1 0 1 0 1 1 0 1

ω(86531) = 10110101

Proposition (E., Galván '23)

For every k , ℓ ≥ 1, the map ω is a bijection

{τ = τ1 . . . τk ∈ ∆wide | τ1 = ℓ}
−→ {w = w1 . . .wℓ ∈ Bℓ | w has k ones and w1 = 1}.
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Second encoding of triangular partitions as balanced words

For τ = τ1 . . . τk ∈ ∆wide with k ≥ 2, let

min(τ) = τk ,

D(τ) = {τ1 − τ2, τ2 − τ3, . . . , τk−1 − τk},
dif(τ) = minD(τ),

wrd(τ) = w1 . . .wk−1, where wi = τi − τi+1 − dif(τ) for all i .

Let χ = (min, dif,wrd).

Example: τ = (12, 9, 7, 4, 1)

min(τ) = 1

D(τ) = {2, 3}
dif(τ) = 2

wrd(τ) = 1011

χ(τ) = (1, 2, 1011)

min(τ)

dif(τ) + 1

dif(τ) + 1

dif(τ)

dif(τ) + 1

1
1

0
1

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 24 / 35



Second encoding of triangular partitions as balanced words

For τ = τ1 . . . τk ∈ ∆wide with k ≥ 2, let

min(τ) = τk ,

D(τ) = {τ1 − τ2, τ2 − τ3, . . . , τk−1 − τk},
dif(τ) = minD(τ),

wrd(τ) = w1 . . .wk−1, where wi = τi − τi+1 − dif(τ) for all i .

Let χ = (min, dif,wrd).

Example: τ = (12, 9, 7, 4, 1)

min(τ) = 1

D(τ) = {2, 3}
dif(τ) = 2

wrd(τ) = 1011

χ(τ) = (1, 2, 1011)

min(τ)

dif(τ) + 1

dif(τ) + 1

dif(τ)

dif(τ) + 1

1
1

0
1

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 24 / 35



Second encoding of triangular partitions as balanced words

For τ = τ1 . . . τk ∈ ∆wide with k ≥ 2, let

min(τ) = τk ,

D(τ) = {τ1 − τ2, τ2 − τ3, . . . , τk−1 − τk},
dif(τ) = minD(τ),

wrd(τ) = w1 . . .wk−1, where wi = τi − τi+1 − dif(τ) for all i .

Let χ = (min, dif,wrd).

Example: τ = (12, 9, 7, 4, 1)

min(τ) = 1

D(τ) = {2, 3}
dif(τ) = 2

wrd(τ) = 1011

χ(τ) = (1, 2, 1011)

min(τ)

dif(τ) + 1

dif(τ) + 1

dif(τ)

dif(τ) + 1

1
1

0
1

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 24 / 35



Second encoding and e�cient generation

Let B0 denote the set of balanced words that contain at least one zero.

Theorem (E., Galván '23)

The map χ = (min, dif,wrd) is a bijection between the set of wide

triangular partitions with at least two parts and the set

T = {(m, d ,w) ∈ N× N× B0 | m ≤ d + 1; w1 ∈ B0
if m = d + 1}.

Theorem (E., Galván '23)

There is an algorithm that �nds |∆(n)| for 1 ≤ n ≤ N in time O(N5/2).

1 Perform a depth �rst search through the tree of balanced words of
length ≤ ⌊

√
2N⌋. The children of a word w can be w0 and/or w1.

2 For each w in the tree, search through the pairs (m, d) such that
(m, d ,w) ∈ T and the size of the corresponding partition is ≤ N.

3 Each triplet (m, d ,w) accounts for two triangular partitions (conjugate
of each other), unless it corresponds to the staircase partition.
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The sequence |∆(n)|
This algorithm allows us to compute the �rst 105 terms of the sequence
|∆(n)|, compared to the 39 terms that had been previously computed.

The sequence |∆(n)| and the bounds C n log n < |∆(n)| < C ′n log n
given by Corteel�Rémond�Schae�er�Thomas '99.
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The sequence |∆(n)|/(n log n)

The sequence |∆(n)|/(n log n) seems to oscillate between 0.42 and 0.45.
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5. Generating functions
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Generating functions for (subsets of) triangular partitions

Theorem (Corteel, Rémond, Schae�er, Thomas '99)∑
n≥0

|∆(n)|zn =
1

1− z
+

∑
gcd(a,b)=1

∑
0≤j<a
0≤i<b

∑
1≤m<k

zN∆(a,b,k,m,i ,j),

where

N∆(a, b, k,m, i , j) = (k − 1)

(
(a+ 1)(b + 1)

2
− 1

)
+

(
k − 1

2

)
ab + ij

+ i(k − 1)a+ j(k − 1)b + T (a, b, j) + T (b, a, i) +m

and T (a, b, j) =
∑j

r=1
(⌊rb/a⌋+ 1).

We can give similar generating functions for partitions with a given number
(i.e. one or two) of removable and addable cells.
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One removable vs two removable cells

Let ∆1(n),∆2(n) ⊂ ∆(n) denote the subsets of partitions with one and
two removable cells, respectively.

Open questions:

Is |∆2(n)| > |∆1(n)| for all n ≥ 9?

Do the local maxima of |∆1(n)| and the local minima of |∆2(n)|
always occur when n ≡ 2 (mod 3)?
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6. Triangular partitions inside a rectangle
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Triangular partitions inside a square

∆h×ℓ = set of triangular partitions whose Young diagram �ts inside an
h × ℓ rectangle (i.e., with ≤ h parts and largest part ≤ ℓ).

Theorem (E., Galván '23)∣∣∣∆ℓ×ℓ
∣∣∣ = 1+

ℓ∑
i=1

(
ℓ− i + 2

2

)
φ(i).

Proof idea:

Use our �rst encoding as balanced words.

Apply Lipatov's enumeration formula for balanced words.
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Triangular partitions inside a square

We can also give a direct combinatorial proof:

Construct a bijection between triangular partitions and

Q = {(a, b, d , e) ∈ N4 | d < a, gcd(d , e) = 1}.

d

e(a− d , b + e)

(a, b)
rightmost removable cell

Characterize the tuples (a, b, d , e) coming from partitions in ∆ℓ×ℓ.

For �xed d < e with gcd(d , e) = 1, the tuples of the form (a, b, d , e)
and (a, b, e, e − d) are in bijection with the lattice points inside a
certain triangle, which are counted by

(
ℓ−e+2

2

)
.
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Triangular partitions inside a rectangle

The above argument also gives a new combinatorial proof of Lipatov's
enumeration formula for balanced words.

We have similar formulas for other rectangles:

∣∣∣∆ℓ×(ℓ−1)
∣∣∣ = 1

2
+

1

2

ℓ∑
i=1

(ℓ− i + 1)2φ(i),

∣∣∣∆ℓ×(ℓ−2)
∣∣∣ = 1− ℓ+

ℓ∑
i=1

((
ℓ− i + 1

2

)
+

1

2

)
φ(i).

But not for the general case
∣∣∆h×ℓ

∣∣.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 34 / 35



Triangular partitions inside a rectangle

The above argument also gives a new combinatorial proof of Lipatov's
enumeration formula for balanced words.

We have similar formulas for other rectangles:

∣∣∣∆ℓ×(ℓ−1)
∣∣∣ = 1

2
+

1

2

ℓ∑
i=1

(ℓ− i + 1)2φ(i),

∣∣∣∆ℓ×(ℓ−2)
∣∣∣ = 1− ℓ+

ℓ∑
i=1

((
ℓ− i + 1

2

)
+

1

2

)
φ(i).

But not for the general case
∣∣∆h×ℓ

∣∣.

Sergi Elizalde (Dartmouth College) Triangular partitions Michigan Tech, Jan '24 34 / 35



Further research

Triangular Young tableaux.

1
2

3 4
5

6

7
8

9

Pyramidal partitions in higher dimensions (corner cuts).

Convex and concave partitions.

Thank you!
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