Descents on quasi-Stirling permutations

Sergi Elizalde
Dartmouth College

UMass Amherst Discrete Math Seminar, March 5, 2020

Descents

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{r}$ be a sequence of positive integers.
i is a descent of π if $\pi_{i}>\pi_{i+1}$ or $i=r$.

Descents

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{r}$ be a sequence of positive integers.
i is a descent of π if $\pi_{i}>\pi_{i+1}$ or $i=r$. $\operatorname{des}(\pi)=$ number of descents of π.

Descents

Definition

Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{r}$ be a sequence of positive integers.
i is a descent of π if $\pi_{i}>\pi_{i+1}$ or $i=r$. $\operatorname{des}(\pi)=$ number of descents of π.

Example $\operatorname{des}(36522131)=5$

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$.

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$.

Definition

Eulerian polynomials:

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Eulerian polynomials

$\mathcal{S}_{n}=$ set of permutations of $\{1,2, \ldots, n\}$.

Definition

Eulerian polynomials:

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
A_{1}(t)=t \\
A_{2}(t)=t+t^{2} \\
A_{3}(t)=t+4 t^{2}+t^{3} \\
A_{4}(t)=t+11 t^{2}+11 t^{3}+t^{4}
\end{gathered}
$$

Eulerian polynomials

$$
\mathcal{S}_{n}=\text { set of permutations of }\{1,2, \ldots, n\} .
$$

Definition

Eulerian polynomials:

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
A_{1}(t)=t \\
A_{2}(t)=t+t^{2} \\
A_{3}(t)=t+4 t^{2}+t^{3} \\
A_{4}(t)=t+11 t^{2}+11 t^{3}+t^{4}
\end{gathered}
$$

These polynomials appear in work of Euler from 1755.

Eulerian polynomials

$$
\begin{aligned}
& \text { c. }=\frac{1}{I(p-I)} \\
& b=\frac{p+I}{I .2(p-I)^{2}} \\
& g=\frac{P D+4 P+I}{1.2 .3(p-I)^{3}} \\
& \delta=\frac{p^{3}+11 p^{2}+11 p+1}{1.2 \cdot 3 \cdot 4(p-1)^{4}} \\
& =\frac{p^{4}+26 p^{3}+66 p^{2}+26 p+I}{1.2 \cdot 3 \cdot 4 \cdot 5(p-1)} \\
& \zeta=\frac{p^{5}+57 p^{4}+302 p^{3}+302 p^{2}+57 p+x}{1.2 \cdot 3 \cdot 4 \cdot 5 \cdot 6(p-x)^{6}} \\
& \eta=\frac{p^{6}+x 20 p^{5}+1191 p^{4}+2416 p^{3}+x 191 p^{2}+120 p+1}{1.2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7(p-x)^{7}}
\end{aligned}
$$

Eulerian polynomials

Euler was considering the series

$$
\begin{aligned}
& \sum_{m \geq 0} m t^{m}=\frac{t}{(1-t)^{2}} \\
& \sum_{m \geq 0} m^{2} t^{m}=\frac{t+t^{2}}{(1-t)^{3}} \\
& \sum_{m \geq 0} m^{3} t^{m}=\frac{t+4 t^{2}+t^{3}}{(1-t)^{4}} \\
& \sum_{m \geq 0} m^{4} t^{m}=\frac{t+11 t^{2}+11 t^{3}+t^{4}}{(1-t)^{5}}
\end{aligned}
$$

Eulerian polynomials

Euler was considering the series

$$
\begin{aligned}
& \sum_{m \geq 0} m t^{m}=\frac{t}{(1-t)^{2}} \\
& \sum_{m \geq 0} m^{2} t^{m}=\frac{t+t^{2}}{(1-t)^{3}} \\
& \sum_{m \geq 0} m^{3} t^{m}=\frac{t+4 t^{2}+t^{3}}{(1-t)^{4}} \\
& \sum_{m \geq 0} m^{4} t^{m}=\frac{t+11 t^{2}+11 t^{3}+t^{4}}{(1-t)^{5}}
\end{aligned}
$$

In general,

$$
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}}
$$

Stirling numbers

Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set $\{1,2, \ldots, n\}$ into k blocks.

Stirling numbers

Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set $\{1,2, \ldots, n\}$ into k blocks.

In 1978, Gessel and Stanley were interested in the series

$$
\begin{aligned}
& \sum_{m \geq 0} S(m+1, m) t^{m}=\frac{t}{(1-t)^{3}} \\
& \sum_{m \geq 0} S(m+2, m) t^{m}=\frac{t+2 t^{2}}{(1-t)^{5}} \\
& \sum_{m \geq 0} S(m+3, m) t^{m}=\frac{t+8 t^{2}+6 t^{3}}{(1-t)^{7}} \\
& \sum_{m \geq 0} S(m+4, m) t^{m}=\frac{t+22 t^{2}+58 t^{3}+24 t^{4}}{(1-t)^{9}}
\end{aligned}
$$

Stirling numbers

Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set $\{1,2, \ldots, n\}$ into k blocks.

In 1978, Gessel and Stanley were interested in the series

$$
\begin{aligned}
& \sum_{m \geq 0} S(m+1, m) t^{m}=\frac{t}{(1-t)^{3}} \\
& \sum_{m \geq 0} S(m+2, m) t^{m}=\frac{t+2 t^{2}}{(1-t)^{5}} \\
& \sum_{m \geq 0} S(m+3, m) t^{m}=\frac{t+8 t^{2}+6 t^{3}}{(1-t)^{7}} \\
& \sum_{m \geq 0} S(m+4, m) t^{m}=\frac{t+22 t^{2}+58 t^{3}+24 t^{4}}{(1-t)^{9}}
\end{aligned}
$$

What are the polynomials in the numerator?

Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the pattern 212.

Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ satisfy that, if $i<j<k$ and $\pi_{i}=\pi_{k}$, then $\pi_{j}>\pi_{i}$.

Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ satisfy that, if $i<j<k$ and $\pi_{i}=\pi_{k}$, then $\pi_{j}>\pi_{i}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $\{1,1,2,2, \ldots, n, n\}$.

Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ satisfy that, if $i<j<k$ and $\pi_{i}=\pi_{k}$, then $\pi_{j}>\pi_{i}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $\{1,1,2,2, \ldots, n, n\}$.

Example

$$
\mathcal{Q}_{2}=\{1122,1221,2211\}
$$

Stirling permutations

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the pattern 212.
In other words, Stirling permutations $\pi_{1} \pi_{2} \ldots \pi_{2 n}$ satisfy that, if $i<j<k$ and $\pi_{i}=\pi_{k}$, then $\pi_{j}>\pi_{i}$.
$\mathcal{Q}_{n}=$ set of Stirling permutations of $\{1,1,2,2, \ldots, n, n\}$.

Example

$$
\mathcal{Q}_{2}=\{1122,1221,2211\}
$$

We have $\left|\mathcal{Q}_{n}\right|=(2 n-1)!!=(2 n-1) \cdot(2 n-3) \cdots \cdots 3 \cdot 1$, since every permutation in \mathcal{Q}_{n} can be obtained by inserting $n n$ into one of the $2 n-1$ spaces of a permutation in \mathcal{Q}_{n-1}.

Stirling polynomials

Definition (Gessel-Stanley '78)
Stirling polynomials:

$$
Q_{n}(t)=\sum_{\pi \in \mathcal{Q}_{n}} t^{\operatorname{des}(\pi)}
$$

Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

$$
Q_{n}(t)=\sum_{\pi \in \mathcal{Q}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
Q_{1}(t)=t \\
Q_{2}(t)=t+2 t^{2} \\
Q_{3}(t)=t+8 t^{2}+6 t^{3}
\end{gathered}
$$

Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

$$
Q_{n}(t)=\sum_{\pi \in \mathcal{Q}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
Q_{1}(t)=t \\
Q_{2}(t)=t+2 t^{2} \\
Q_{3}(t)=t+8 t^{2}+6 t^{3}
\end{gathered}
$$

Theorem (Gessel-Stanley '78)

$$
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{Q_{n}(t)}{(1-t)^{2 n+1}}
$$

Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_{n}(t)$ also gives the enumeration of \mathcal{Q}_{n} by the number of plateaus, that is, positions i such that $\pi_{i}=\pi_{i+1}$.

Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_{n}(t)$ also gives the enumeration of \mathcal{Q}_{n} by the number of plateaus, that is, positions i such that $\pi_{i}=\pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_{n}(t)$ has only real roots, and the distribution of des on \mathcal{Q}_{n} is asymptotically normal.

Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_{n}(t)$ also gives the enumeration of \mathcal{Q}_{n} by the number of plateaus, that is, positions i such that $\pi_{i}=\pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_{n}(t)$ has only real roots, and the distribution of des on \mathcal{Q}_{n} is asymptotically normal.
- Janson '08: The joint distribution of ascents, descents and plateaus on \mathcal{Q}_{n} is asymptotically normal.

Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_{n}(t)$ also gives the enumeration of \mathcal{Q}_{n} by the number of plateaus, that is, positions i such that $\pi_{i}=\pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_{n}(t)$ has only real roots, and the distribution of des on \mathcal{Q}_{n} is asymptotically normal.
- Janson '08: The joint distribution of ascents, descents and plateaus on \mathcal{Q}_{n} is asymptotically normal.
- Haglund and Visontai '12: The multivariable polynomials tracking these 3 statistics are stable (i.e., they don't vanish when all the variables have a positive imaginary part).

Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_{n}(t)$ also gives the enumeration of \mathcal{Q}_{n} by the number of plateaus, that is, positions i such that $\pi_{i}=\pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_{n}(t)$ has only real roots, and the distribution of des on \mathcal{Q}_{n} is asymptotically normal.
- Janson '08: The joint distribution of ascents, descents and plateaus on \mathcal{Q}_{n} is asymptotically normal.
- Haglund and Visontai '12: The multivariable polynomials tracking these 3 statistics are stable (i.e., they don't vanish when all the variables have a positive imaginary part).
- The coefficients of $Q_{n}(t)$ are sometimes called second-order Eulerian numbers.

Stirling permutations and trees

$\mathcal{I}_{n}=$ set of increasing edge-labeled plane rooted trees with n edges.

Stirling permutations and trees

$\mathcal{I}_{n}=$ set of increasing edge-labeled plane rooted trees with n edges.

Theorem (Janson '08)

There is a bijection $\varphi: \mathcal{I}_{n} \longrightarrow \mathcal{Q}_{n}$ obtained by traversing the edges of the tree along depth-first walk from left to right, and recording their labels.

Stirling permutations and trees

$\mathcal{I}_{n}=$ set of increasing edge-labeled plane rooted trees with n edges.

Theorem (Janson '08)

There is a bijection $\varphi: \mathcal{I}_{n} \longrightarrow \mathcal{Q}_{n}$ obtained by traversing the edges of the tree along depth-first walk from left to right, and recording their labels.

If we remove the increasing condition on the trees, what is the image of φ ?

Quasi-Stirling permutations and trees

$\mathcal{T}_{n}=$ set of edge-labeled plane rooted trees with n edges.

Quasi-Stirling permutations and trees

$\mathcal{T}_{n}=$ set of edge-labeled plane rooted trees with n edges.

Quasi-Stirling permutations and trees

$\mathcal{T}_{n}=$ set of edge-labeled plane rooted trees with n edges.

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the patterns 1212 and 2121.

Quasi-Stirling permutations and trees

$\mathcal{T}_{n}=$ set of edge-labeled plane rooted trees with n edges.

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1,1,2,2, \ldots, n, n\}$ that avoids the patterns 1212 and 2121. In other words, it does not have four positions $i<j<k<\ell$ with $\pi_{i}=\pi_{k}$ and $\pi_{j}=\pi_{\ell}$ (i.e., it is non-crossing).

Quasi-Stirling permutations

$$
\overline{\mathcal{Q}}_{n}=\text { set of quasi-Stirling permutations of }\{1,1,2,2, \ldots, n, n\} .
$$

Example

$$
\overline{\mathcal{Q}}_{2}=\{1122,1221,2211,2112\}
$$

Quasi-Stirling permutations

$$
\overline{\mathcal{Q}}_{n}=\text { set of quasi-Stirling permutations of }\{1,1,2,2, \ldots, n, n\} .
$$

Example

$$
\overline{\mathcal{Q}}_{2}=\{1122,1221,2211,2112\}
$$

Theorem (Archer-Gregory-Pennington-Slayden '19)

φ is a bijection between \mathcal{T}_{n} and $\overline{\mathcal{Q}}_{n}$.

Quasi-Stirling permutations

$$
\overline{\mathcal{Q}}_{n}=\text { set of quasi-Stirling permutations of }\{1,1,2,2, \ldots, n, n\} .
$$

Example

$$
\overline{\mathcal{Q}}_{2}=\{1122,1221,2211,2112\}
$$

Theorem (Archer-Gregory-Pennington-Slayden '19)

φ is a bijection between \mathcal{T}_{n} and $\overline{\mathcal{Q}}_{n}$.
The number of unlabeled plane rooted trees with n edges is the Catalan number C_{n}.

Quasi-Stirling permutations

$$
\overline{\mathcal{Q}}_{n}=\text { set of quasi-Stirling permutations of }\{1,1,2,2, \ldots, n, n\} .
$$

Example

$$
\overline{\mathcal{Q}}_{2}=\{1122,1221,2211,2112\}
$$

Theorem (Archer-Gregory-Pennington-Slayden '19)

φ is a bijection between \mathcal{T}_{n} and $\overline{\mathcal{Q}}_{n}$.
The number of unlabeled plane rooted trees with n edges is the Catalan number C_{n}.

It follows that

$$
\left|\overline{\mathcal{Q}}_{n}\right|=n!C_{n}=\frac{(2 n)!}{(n+1)!}
$$

Descents on quasi-Stirling permutations

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Descents on quasi-Stirling permutations

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Example

Set of $\pi \in \overline{\mathcal{Q}}_{3}$ with $\operatorname{des}(\pi)=1:\{112233\} \quad 1$
with $\operatorname{des}(\pi)=2$:
$\{112332,113223,113322,122133,122331,133122,211233,221133$, 223113, 223311, 233112, 311223, 331122\}
with $\operatorname{des}(\pi)=3$:
\{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}

Descents on quasi-Stirling permutations

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Example

Set of $\pi \in \overline{\mathcal{Q}}_{3}$ with $\operatorname{des}(\pi)=1:\{112233\}$
with $\operatorname{des}(\pi)=2$:
$\{112332,113223,113322,122133,122331,133122,211233,221133$, 223113, 223311, 233112, 311223, 331122\}
with $\operatorname{des}(\pi)=3$:
$\{123321,132231,133221,211332,213312,221331,231132,233211$, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}

One can show that $\operatorname{des}(\pi) \leq n$ for all $\pi \in \overline{\mathcal{Q}}_{n}$.

Descents on quasi-Stirling permutations

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Example

Set of $\pi \in \overline{\mathcal{Q}}_{3}$ with $\operatorname{des}(\pi)=1:\{112233\}$
with $\operatorname{des}(\pi)=2$:
$\{112332,113223,113322,122133,122331,133122,211233,221133$, 223113, 223311, 233112, 311223, 331122\}
with $\operatorname{des}(\pi)=3$:
$\{123321,132231,133221,211332,213312,221331,231132,233211$, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}

One can show that $\operatorname{des}(\pi) \leq n$ for all $\pi \in \overline{\mathcal{Q}}_{n}$.
To prove this conjecture, we look at how descents are transformed by the bijection φ.

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_{n}$ and $\pi=\varphi(T) \in \overline{\mathcal{Q}}_{n}$, then

$$
\operatorname{des}(\pi)=\operatorname{cdes}(T)
$$

where $\operatorname{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

Quasi-Stirling permutations with most descents

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Quasi-Stirling permutations with most descents

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_{n}$ with $\operatorname{cdes}(T)=n$,

Quasi-Stirling permutations with most descents

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_{n}$ with $\operatorname{cdes}(T)=n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children.

Quasi-Stirling permutations with most descents

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_{n}$ with $\operatorname{cdes}(T)=n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children. Such trees are in bijection with unordered trees:

Quasi-Stirling permutations with most descents

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_{n}$ with $\operatorname{des}(\pi)=n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_{n}$ with $\operatorname{cdes}(T)=n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children. Such trees are in bijection with unordered trees:

By Cayley's formula, there are $(n+1)^{n-1}$ such trees.

Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_{n}$.

Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_{n}$.
Define the quasi-Stirling polynomials

$$
\bar{Q}_{n}(t)=\sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)}
$$

Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_{n}$.
Define the quasi-Stirling polynomials

$$
\bar{Q}_{n}(t)=\sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
\bar{Q}_{1}(t)=t \\
\bar{Q}_{2}(t)=t+3 t^{2} \\
\bar{Q}_{3}(t)=t+13 t^{2}+16 t^{3}
\end{gathered}
$$

Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_{n}$.
Define the quasi-Stirling polynomials

$$
\bar{Q}_{n}(t)=\sum_{\pi \in \overline{\mathcal{Q}}_{n}} t^{\operatorname{des}(\pi)}
$$

Example

$$
\begin{gathered}
\bar{Q}_{1}(t)=t \\
\bar{Q}_{2}(t)=t+3 t^{2} \\
\bar{Q}_{3}(t)=t+13 t^{2}+16 t^{3}
\end{gathered}
$$

Define their exponential generating function (EGF):

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \bar{Q}_{n}(t) \frac{z^{n}}{n!}
$$

EGF for Eulerian polynomials

Recall the Eulerian polynomials

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

EGF for Eulerian polynomials

Recall the Eulerian polynomials

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Their EGF

$$
A(t, z)=\sum_{n \geq 0} A_{n}(t) \frac{z^{n}}{n!}
$$

EGF for Eulerian polynomials

Recall the Eulerian polynomials

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Their EGF

$$
A(t, z)=\sum_{n \geq 0} A_{n}(t) \frac{z^{n}}{n!}
$$

has a well-known closed form

$$
A(t, z)=\frac{1-t}{1-t e^{(1-t) z}}
$$

EGF for Eulerian polynomials

Recall the Eulerian polynomials

$$
A_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\operatorname{des}(\pi)}
$$

Their EGF

$$
A(t, z)=\sum_{n \geq 0} A_{n}(t) \frac{z^{n}}{n!}
$$

has a well-known closed form

$$
A(t, z)=\frac{1-t}{1-t e^{(1-t) z}}
$$

Now we are ready to give an expression for $\bar{Q}(t, z)$.

Descents on quasi-Stirling permutations

Theorem

The $E G F \bar{Q}(t, z)$ for quasi-Stirling permutations by the number of descents satisfies the implicit equation

$$
\bar{Q}(t, z)=A(t, z \bar{Q}(t, z))
$$

that is,

$$
\bar{Q}(t, z)=\frac{1-t}{1-t e^{(1-t) z \bar{Q}(t, z)}}
$$

Descents on quasi-Stirling permutations

Theorem

The $E G F \bar{Q}(t, z)$ for quasi-Stirling permutations by the number of descents satisfies the implicit equation

$$
\bar{Q}(t, z)=A(t, z \bar{Q}(t, z))
$$

that is,

$$
\bar{Q}(t, z)=\frac{1-t}{1-t e^{(1-t) z \bar{Q}(t, z)}}
$$

Its coefficients satisfy

$$
\bar{Q}_{n}(t)=\frac{n!}{n+1}\left[z^{n}\right] A(t, z)^{n+1}
$$

Here $\left[z^{n}\right] F(z)$ denotes the coefficient of z^{n} in $F(z)$.

Proof ideas

By the bijection φ,

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{T \in \mathcal{T}_{n}} t^{\operatorname{cdes}(T)} \frac{z^{n}}{n!} .
$$

Proof ideas

By the bijection φ,

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{T \in \mathcal{T}_{n}} t^{\operatorname{cdes}(T)} \frac{z^{n}}{n!}
$$

Decompose trees in \mathcal{T}_{n} as

Proof ideas

By the bijection φ,

$$
\bar{Q}(t, z)=\sum_{n \geq 0} \sum_{T \in \mathcal{T}_{n}} t^{\operatorname{cdes}(T)} \frac{z^{n}}{n!}
$$

Decompose trees in \mathcal{T}_{n} as

and use that

$$
\operatorname{cdes}(T)=\sum_{i=1}^{r}(\operatorname{cdes}(\overbrace{i}^{T_{i}})-1)+\operatorname{des}\left(a_{1} a_{2} \ldots a_{r}\right)
$$

Proof ideas

The EGF for each piece T_{i} is $z \bar{Q}(t, z)$.

Proof ideas

The EGF for each piece $\overbrace{i}^{a_{i}}$ is $z \bar{Q}(t, z)$.
Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$
\bar{Q}(t, z)=A(t, z \bar{Q}(t, z)) .
$$

Proof ideas

The EGF for each piece T_{i} is $z \bar{Q}(t, z)$.
Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$
\bar{Q}(t, z)=A(t, z \bar{Q}(t, z))
$$

Finally, extracting its coefficients using Lagrange inversion gives

$$
\bar{Q}_{n}(t)=\frac{n!}{n+1}\left[z^{n}\right] A(t, z)^{n+1}
$$

Consequences

Recall the formulas:

$$
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}} \quad \text { (Eulerian) }
$$

Consequences

Recall the formulas:

$$
\begin{gathered}
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}} \quad \text { (Eulerian) } \\
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{Q_{n}(t)}{(1-t)^{2 n+1}} \quad \text { (Stirling) }
\end{gathered}
$$

Consequences

Recall the formulas:

$$
\begin{gathered}
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}} \quad \text { (Eulerian) } \\
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{Q_{n}(t)}{(1-t)^{2 n+1}} \quad \text { (Stirling) } \\
\sum_{m \geq 0} ? ? ? \quad t^{m}=\frac{\bar{Q}_{n}(t)}{(1-t)^{2 n+1}} \quad \text { (quasi-Stirling) }
\end{gathered}
$$

Consequences

Recall the formulas:

$$
\begin{gathered}
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}} \quad \text { (Eulerian) } \\
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{Q_{n}(t)}{(1-t)^{2 n+1}} \quad \text { (Stirling) }
\end{gathered}
$$

Theorem

$$
\sum_{m \geq 0} \frac{m^{n}}{n+1}\binom{m+n}{m} t^{m}=\frac{\bar{Q}_{n}(t)}{(1-t)^{2 n+1}}
$$

(quasi-Stirling)

Consequences

Recall the formulas:

$$
\begin{gathered}
\sum_{m \geq 0} m^{n} t^{m}=\frac{A_{n}(t)}{(1-t)^{n+1}} \quad \text { (Eulerian) } \\
\sum_{m \geq 0} S(m+n, m) t^{m}=\frac{Q_{n}(t)}{(1-t)^{2 n+1}} \quad \text { (Stirling) }
\end{gathered}
$$

Theorem

$$
\sum_{m \geq 0} \frac{m^{n}}{n+1}\binom{m+n}{m} t^{m}=\frac{\bar{Q}_{n}(t)}{(1-t)^{2 n+1}}
$$

(quasi-Stirling)

Open: Find a combinatorial proof.

Properties of quasi-Stirling polynomials

Recall: i is a plateau of π if $\pi_{i}=\pi_{i+1}$,
i is an ascent of π if $\pi_{i}<\pi_{i+1}$ or $i=0$.

Properties of quasi-Stirling polynomials

Recall: i is a plateau of π if $\pi_{i}=\pi_{i+1}$, i is an ascent of π if $\pi_{i}<\pi_{i+1}$ or $i=0$.

Theorem (Bóna '08)

On average, Stirling permutations in \mathcal{Q}_{n} have $(2 n+1) / 3$ ascents, $(2 n+1) / 3$ descents, and $(2 n+1) / 3$ plateaus.

Properties of quasi-Stirling polynomials

Recall: i is a plateau of π if $\pi_{i}=\pi_{i+1}$, i is an ascent of π if $\pi_{i}<\pi_{i+1}$ or $i=0$.

Theorem (Bóna '08)

On average, Stirling permutations in \mathcal{Q}_{n} have $(2 n+1) / 3$ ascents, $(2 n+1) / 3$ descents, and $(2 n+1) / 3$ plateaus.

Theorem

On average, quasi-Stirling permutations in $\overline{\mathcal{Q}}_{n}$ have $(3 n+1) / 4$ ascents, $(3 n+1) / 4$ descents, and $(n+1) / 2$ plateaus.

Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_{n}(t)$ are real, distinct, and nonpositive.

Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_{n}(t)$ are real, distinct, and nonpositive.

Theorem (Brenti'89, Bóna'08)

The same holds for the Stirling polynomials $Q_{n}(t)$.

Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_{n}(t)$ are real, distinct, and nonpositive.

Theorem (Brenti'89, Bóna'08)

The same holds for the Stirling polynomials $Q_{n}(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\bar{Q}_{n}(t)$.

Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_{n}(t)$ are real, distinct, and nonpositive.

Theorem (Brenti'89, Bóna'08)

The same holds for the Stirling polynomials $Q_{n}(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\bar{Q}_{n}(t)$.

Corollary

- The coefficients of $\bar{Q}_{n}(t)$ are unimodal and log-concave.

Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_{n}(t)$ are real, distinct, and nonpositive.

Theorem (Brenti'89, Bóna'08)

The same holds for the Stirling polynomials $Q_{n}(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\bar{Q}_{n}(t)$.

Corollary

- The coefficients of $\bar{Q}_{n}(t)$ are unimodal and log-concave.
- The distribution of the number of descents on $\overline{\mathcal{Q}}_{n}$ converges to a normal distribution as $n \rightarrow \infty$.

Properties of quasi-Stirling polynomials

Proving real-rootedness of $\bar{Q}_{n}(t)$ is more complicated than for $A_{n}(t)$ or $Q_{n}(t)$, because for quasi-Stirling permutations there is no simple recursive description relating $\overline{\mathcal{Q}}_{n}$ and $\overline{\mathcal{Q}}_{n-1}$.

Properties of quasi-Stirling polynomials

Proving real-rootedness of $\bar{Q}_{n}(t)$ is more complicated than for $A_{n}(t)$ or $Q_{n}(t)$, because for quasi-Stirling permutations there is no simple recursive description relating $\overline{\mathcal{Q}}_{n}$ and $\overline{\mathcal{Q}}_{n-1}$.

Our proof expresses $\bar{Q}_{n}(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata-Schützenberger.

Properties of quasi-Stirling polynomials

Proving real-rootedness of $\bar{Q}_{n}(t)$ is more complicated than for $A_{n}(t)$ or $Q_{n}(t)$, because for quasi-Stirling permutations there is no simple recursive description relating $\overline{\mathcal{Q}}_{n}$ and $\overline{\mathcal{Q}}_{n-1}$.

Our proof expresses $\bar{Q}_{n}(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata-Schützenberger.

In the process, we show that
$\#\left\{\pi \in \overline{\mathcal{Q}}_{n}\right.$ with $m+1$ descents $\}$
$=\#\{$ injections $[n-1] \rightarrow[2 n]$ with m excedances $\}$.

Properties of quasi-Stirling polynomials

Proving real-rootedness of $\bar{Q}_{n}(t)$ is more complicated than for $A_{n}(t)$ or $Q_{n}(t)$, because for quasi-Stirling permutations there is no simple recursive description relating $\overline{\mathcal{Q}}_{n}$ and $\overline{\mathcal{Q}}_{n-1}$.

Our proof expresses $\bar{Q}_{n}(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata-Schützenberger.

In the process, we show that

$$
\begin{aligned}
& \#\left\{\pi \in \overline{\mathcal{Q}}_{n} \text { with } m+1 \text { descents }\right\} \\
& \quad=\#\{\text { injections }[n-1] \rightarrow[2 n] \text { with } m \text { excedances }\} .
\end{aligned}
$$

Open: Find a bijective proof.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.
$\mathcal{Q}_{n}^{k}=$ set of k-Stirling permutations.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.
$\mathcal{Q}_{n}^{k}=$ set of k-Stirling permutations.
Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.
$\mathcal{Q}_{n}^{k}=$ set of k-Stirling permutations.
Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the patterns 1212 and 2121.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.
$\mathcal{Q}_{n}^{k}=$ set of k-Stirling permutations.
Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the patterns 1212 and 2121.
$\overline{\mathcal{Q}}_{n}^{k}=$ set of k-quasi-Stirling permutations.

k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in [n]:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the pattern 212.
$\mathcal{Q}_{n}^{k}=$ set of k-Stirling permutations.
Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\left\{1^{k}, 2^{k}, \ldots, n^{k}\right\}$ that avoids the patterns 1212 and 2121.
$\overline{\mathcal{Q}}_{n}^{k}=$ set of k-quasi-Stirling permutations.
For $k=1, \mathcal{Q}_{n}^{1}=\overline{\mathcal{Q}}_{n}^{1}=\mathcal{S}_{n}$. For $k=2, \quad \mathcal{Q}_{n}^{2}=\mathcal{Q}_{n}$ and $\overline{\mathcal{Q}}_{n}^{2}=\overline{\mathcal{Q}}_{n}$.

Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in \mathcal{Q}_{n}^{k} can be obtained by inserting the string $n^{k}=n n \ldots n$ into one of the $(n-1) k+1$ spaces of a permutation in \mathcal{Q}_{n-1}^{k}, so

$$
\left|\mathcal{Q}_{n}^{k}\right|=(k+1)(2 k+1) \cdots \cdots((n-1) k+1)
$$

Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in \mathcal{Q}_{n}^{k} can be obtained by inserting the string $n^{k}=n n \ldots n$ into one of the $(n-1) k+1$ spaces of a permutation in \mathcal{Q}_{n-1}^{k}, so

$$
\left|\mathcal{Q}_{n}^{k}\right|=(k+1)(2 k+1) \cdots \cdots((n-1) k+1)
$$

Theorem

For $n \geq 1$ and $k \geq 1$,

$$
\left|\overline{\mathcal{Q}}_{n}^{k}\right|=\frac{(k n)!}{((k-1) n+1)!}=n!C_{n, k}
$$

where

$$
C_{n, k}=\frac{1}{(k-1) n+1}\binom{k n}{n}
$$

is the nth k-Catalan number.

k-quasi-Stirling permutations and trees

Gessel'94 \& Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.

k-quasi-Stirling permutations and trees

Gessel'94 \& Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.
We have extended them to bijections between k-quasi-Stirling permutations and certain trees.

k-quasi-Stirling permutations and trees

Gessel'94 \& Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.
We have extended them to bijections between k-quasi-Stirling permutations and certain trees.

Example

A bijection between compartmented trees and 3-quasi-Stirling permutations:

Ascents, descents and plateaus on k-quasi-Stirling permutations

Let $\operatorname{asc}(\pi)$ and $\operatorname{plat}(\pi)$ be the number of ascents and plateaus of π.

Ascents, descents and plateaus on k-quasi-Stirling permutations

Let $\operatorname{asc}(\pi)$ and $\operatorname{plat}(\pi)$ be the number of ascents and plateaus of π.
Consider the homogenization of the Eulerian polynomials

$$
\hat{A}_{n}(q, t)=\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)}
$$

Ascents, descents and plateaus on k-quasi-Stirling permutations

Let $\operatorname{asc}(\pi)$ and $\operatorname{plat}(\pi)$ be the number of ascents and plateaus of π.
Consider the homogenization of the Eulerian polynomials

$$
\hat{A}_{n}(q, t)=\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)}
$$

and their EGF

$$
\hat{A}(q, t ; z)=\sum_{n \geq 0} \hat{A}_{n}(q, t) \frac{z^{n}}{n!}=1-q+\frac{q(q-t)}{q-t e^{(q-t) z}}
$$

Ascents, descents and plateaus on k-quasi-Stirling

 permutationsLet $\operatorname{asc}(\pi)$ and $\operatorname{plat}(\pi)$ be the number of ascents and plateaus of π.
Consider the homogenization of the Eulerian polynomials

$$
\hat{A}_{n}(q, t)=\sum_{\pi \in \mathcal{S}_{n}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)}
$$

and their EGF

$$
\hat{A}(q, t ; z)=\sum_{n \geq 0} \hat{A}_{n}(q, t) \frac{z^{n}}{n!}=1-q+\frac{q(q-t)}{q-t e^{(q-t) z}}
$$

Define the multivariate k-quasi-Stirling polynomials
and their EGF

$$
\bar{P}_{n}^{(k)}(q, t, u)=\sum_{\pi \in \overline{\mathcal{Q}}_{n}^{k}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)}
$$

$$
\bar{P}^{(k)}(q, t, u ; z)=\sum_{n \geq 0} \bar{P}_{n}^{(k)}(q, t, u) \frac{z^{n}}{n!} .
$$

Ascents, descents and plateaus on k-quasi-Stirling permutations

This is the most general version of our main result:
Theorem
$\bar{P}^{(k)}(q, t, u ; z)$ satisfies the implicit equation

$$
\bar{P}^{(k)}(q, t, u ; z)=\hat{A}\left(q, t ; z\left(\bar{P}^{(k)}(q, t, u ; z)-1+u\right)^{k-1}\right) .
$$

Ascents, descents and plateaus on k-quasi-Stirling permutations

This is the most general version of our main result:

Theorem

$\bar{P}^{(k)}(q, t, u ; z)$ satisfies the implicit equation

$$
\bar{P}^{(k)}(q, t, u ; z)=\hat{A}\left(q, t ; z\left(\bar{P}^{(k)}(q, t, u ; z)-1+u\right)^{k-1}\right) .
$$

Extracting its coefficients using Lagrange inversion,

$$
\bar{P}_{n}^{(k)}(q, t, u)=\frac{n!}{(k-1) n+1}\left[z^{n}\right](\hat{A}(q, t ; z)-1+u)^{(k-1) n+1} .
$$

Ascents, descents and plateaus on k-quasi-Stirling permutations

This is the most general version of our main result:

Theorem

$\bar{P}^{(k)}(q, t, u ; z)$ satisfies the implicit equation

$$
\bar{P}^{(k)}(q, t, u ; z)=\hat{A}\left(q, t ; z\left(\bar{P}^{(k)}(q, t, u ; z)-1+u\right)^{k-1}\right) .
$$

Extracting its coefficients using Lagrange inversion,

$$
\bar{P}_{n}^{(k)}(q, t, u)=\frac{n!}{(k-1) n+1}\left[z^{n}\right](\hat{A}(q, t ; z)-1+u)^{(k-1) n+1} .
$$

The proof follows ascents, descents and plateaus through the bijection ϕ, and it uses a decomposition of compartmented trees.

Ascents, descents and plateaus on k-Stirling permutations

For k-Stirling permutations, similar ideas give a nice differential equation for the EGF

$$
P^{(k)}(q, t, u ; z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{Q}_{n}^{k}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)} u^{\operatorname{plat}(\pi)} \frac{z^{n}}{n!}
$$

Ascents, descents and plateaus on k-Stirling permutations

For k-Stirling permutations, similar ideas give a nice differential equation for the EGF

$$
P^{(k)}(q, t, u ; z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{Q}_{n}^{k}} q^{\operatorname{asc}(\pi)} t^{\operatorname{des}(\pi)} u^{\mathrm{plat}(\pi)} \frac{z^{n}}{n!}
$$

Theorem

$P(z):=P^{(k)}(q, t, u ; z)$ satisfies the differential equation

$$
P^{\prime}(z)=(P(z)-1+q)(P(z)-1+t)(P(z)-1+u)^{k-1}
$$

with initial condition $P(0)=1$.

Ascents, descents and plateaus on k-Stirling permutations

Proof idea:

- ϕ restricts to a bijection between k-Stirling permutations and increasing compartmented trees.

Ascents, descents and plateaus on k-Stirling permutations

Proof idea:

- ϕ restricts to a bijection between k-Stirling permutations and increasing compartmented trees.
- These trees can be decomposed as

Ascents, descents and plateaus on k-Stirling permutations

