Descents on quasi-Stirling permutations

Sergi Elizalde

Dartmouth College

UVM Combinatorics Seminar September 2021

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_r$ be a sequence of positive integers.

i is a descent of π if $\pi_i > \pi_{i+1}$ or i = r.

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_r$ be a sequence of positive integers.

i is a descent of π if $\pi_i > \pi_{i+1}$ or i = r.

 $des(\pi) = number of descents of \pi$.

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_r$ be a sequence of positive integers.

i is a descent of π if $\pi_i > \pi_{i+1}$ or i = r.

 $des(\pi) = number of descents of \pi$.

Example

des(36522131) =

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_r$ be a sequence of positive integers.

i is a descent of π if $\pi_i > \pi_{i+1}$ or i = r.

 $des(\pi) = number of descents of \pi$.

Example

 $\mathsf{des}(36 \cdot 5 \cdot 22 \cdot 13 \cdot 1 \cdot) =$

Definition

Let $\pi = \pi_1 \pi_2 \dots \pi_r$ be a sequence of positive integers.

i is a descent of π if $\pi_i > \pi_{i+1}$ or i = r.

 $des(\pi) = number of descents of \pi$.

Example

 $des(36\cdot5\cdot22\cdot13\cdot1\cdot)=5$

 $\mathcal{S}_n = \mathsf{set}$ of permutations of $\{1, 2, \dots, n\}$.

 $\mathcal{S}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{permutations} \ \mathsf{of} \ \{1, 2, \dots, n\}.$

Definition

Eulerian polynomials:

$$A_n(t) = \sum_{\pi \in \mathcal{S}_n} t^{\mathsf{des}(\pi)}$$

 $S_n = \text{set of permutations of } \{1, 2, \dots, n\}.$

Definition

Eulerian polynomials:

$$A_n(t) = \sum_{\pi \in \mathcal{S}_n} t^{\mathsf{des}(\pi)}$$

Example

 $S_n = \text{set of permutations of } \{1, 2, \dots, n\}.$

Definition

Eulerian polynomials:

$$A_n(t) = \sum_{\pi \in \mathcal{S}_n} t^{\mathsf{des}(\pi)}$$

Example

These polynomials appear in work of Euler from 1755.

$$c = \frac{1}{1(p-1)}$$

$$b = \frac{p+1}{1.2(p-1)^2}$$

$$\gamma = \frac{pp+4p+1}{1.2.3(p-1)^3}$$

$$\delta = \frac{p^3+11p^2+11p+1}{1.2.3.4(p-1)^4}$$

$$\epsilon = \frac{p^4+26p^3+66p^2+26p+1}{1.2.3\cdot4\cdot5(p-1)^5}$$

$$\epsilon = \frac{p^5+57p^4+302p^3+302p^2+57p+1}{1.2.3\cdot4\cdot5.6(p-1)^6}$$

$$\eta = \frac{p^6+120p^5+1191p^4+2416p^3+1191p^2+120p+1}{1.2.3\cdot4\cdot5.6\cdot7(p-1)^7}$$

Euler was considering the series

$$\sum_{m\geq 0} mt^m = \frac{t}{(1-t)^2}$$

$$\sum_{m\geq 0} m^2 t^m = \frac{t+t^2}{(1-t)^3}$$

$$\sum_{m\geq 0} m^3 t^m = \frac{t+4t^2+t^3}{(1-t)^4}$$

$$\sum_{m\geq 0} m^4 t^m = \frac{t+11t^2+11t^3+t^4}{(1-t)^5} \dots$$

Euler was considering the series

$$\sum_{m\geq 0} mt^m = \frac{t}{(1-t)^2}$$

$$\sum_{m\geq 0} m^2 t^m = \frac{t+t^2}{(1-t)^3}$$

$$\sum_{m\geq 0} m^3 t^m = \frac{t+4t^2+t^3}{(1-t)^4}$$

$$\sum_{m\geq 0} m^4 t^m = \frac{t+11t^2+11t^3+t^4}{(1-t)^5} \dots$$

In general,

$$\sum_{m>0} m^n t^m = \frac{A_n(t)}{(1-t)^{n+1}}.$$

Euler was considering the series

$$\sum_{m\geq 0} mt^m = \frac{t}{(1-t)^2}$$

$$\sum_{m\geq 0} m^2 t^m = \frac{t+t^2}{(1-t)^3}$$

$$\sum_{m\geq 0} m^3 t^m = \frac{t+4t^2+t^3}{(1-t)^4}$$

$$\sum_{m>0} m^4 t^m = \frac{t+11t^2+11t^3+t^4}{(1-t)^5} \dots$$

In general,

$$\sum_{m>0} m^n t^m = \frac{A_n(t)}{(1-t)^{n+1}}.$$

This can be proved by induction on n, differentiating both sides.

Generating function for Eulerian polynomials

Let

$$A(t,z) = \sum_{n\geq 0} A_n(t) \frac{z^n}{n!}$$

be the exponential generating function (EGF) for the Eulerian polynomials.

Generating function for Eulerian polynomials

Let

$$A(t,z) = \sum_{n\geq 0} A_n(t) \frac{z^n}{n!}$$

be the exponential generating function (EGF) for the Eulerian polynomials.

We have

$$A(t,z) = \frac{1-t}{1-te^{(1-t)z}}.$$

Definition

The Stirling number of the second kind S(n, k) is the number of partitions of the set $\{1, 2, ..., n\}$ into k blocks.

Definition

The Stirling number of the second kind S(n, k) is the number of partitions of the set $\{1, 2, ..., n\}$ into k blocks.

Example:
$$S(3,2) = 3$$
. $\{1,2\} \cup \{3\}, \{1,3\} \cup \{2\}, \{2,3\} \cup \{1\}$.

Definition

The Stirling number of the second kind S(n, k) is the number of partitions of the set $\{1, 2, ..., n\}$ into k blocks.

Example:
$$S(3,2) = 3$$
. $\{1,2\} \cup \{3\}, \{1,3\} \cup \{2\}, \{2,3\} \cup \{1\}$.

In 1978, Gessel and Stanley considered the series

$$\sum_{m\geq 0} S(m+1,m) t^m = \frac{t}{(1-t)^3}$$

$$\sum_{m\geq 0} S(m+2,m) t^m = \frac{t+2t^2}{(1-t)^5}$$

$$\sum_{m\geq 0} S(m+3,m) t^m = \frac{t+8t^2+6t^3}{(1-t)^7}$$

$$\sum_{m\geq 0} S(m+4,m) t^m = \frac{t+22t^2+58t^3+24t^4}{(1-t)^9} \dots$$

Definition

The Stirling number of the second kind S(n, k) is the number of partitions of the set $\{1, 2, ..., n\}$ into k blocks.

Example: S(3,2) = 3. $\{1,2\} \cup \{3\}, \{1,3\} \cup \{2\}, \{2,3\} \cup \{1\}.$

In 1978, Gessel and Stanley considered the series

$$\sum_{m\geq 0} S(m+1,m) t^m = \frac{t}{(1-t)^3}$$

$$\sum_{m\geq 0} S(m+2,m) t^m = \frac{t+2t^2}{(1-t)^5}$$

$$\sum_{m\geq 0} S(m+3,m) t^m = \frac{t+8t^2+6t^3}{(1-t)^7}$$

$$\sum_{m\geq 0} S(m+4,m) t^m = \frac{t+22t^2+58t^3+24t^4}{(1-t)^9} \dots$$

What are the polynomials in the numerator? Positive coefficients?

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1,1,2,2,\ldots,n,n\}$ that avoids the pattern 212.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1\pi_2...\pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \dots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1 \pi_2 \dots \pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1 \pi_2 \dots \pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

13324421

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1 \pi_2 \dots \pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

 $13324421 \in \mathcal{Q}_4$

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1\pi_2...\pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

 $13324421 \in \mathcal{Q}_4$, 312321

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1\pi_2...\pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

 $13324421 \in \mathcal{Q}_4$, $312321 \notin \mathcal{Q}_3$,

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1\pi_2...\pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

$$13324421 \in \mathcal{Q}_4$$
,

$$312321 \notin Q_3$$
,

$$\mathcal{Q}_2 = \{1122, 1221, 2211\}.$$

Definition (Gessel-Stanley '78)

A Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the pattern 212.

In other words, Stirling permutations $\pi_1 \pi_2 \dots \pi_{2n}$ satisfy that, if i < j < k and $\pi_i = \pi_k$, then $\pi_j > \pi_i$.

 $Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

$$13324421 \in \mathcal{Q}_4, \qquad 312321 \notin \mathcal{Q}_3, \qquad \mathcal{Q}_2 = \{1122, 1221, 2211\}.$$

We have $|Q_n| = (2n-1) \cdot (2n-3) \cdot \cdots \cdot 3 \cdot 1$, since every permutation in Q_n can be obtained by inserting nn into one of the 2n-1 spaces of a permutation in Q_{n-1} .

Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

$$Q_n(t) = \sum_{\pi \in \mathcal{Q}_n} t^{\mathsf{des}(\pi)}$$

Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

$$Q_n(t) = \sum_{\pi \in \mathcal{Q}_n} t^{\mathsf{des}(\pi)}$$

Example

$$Q_1(t) = t$$
 11·
 $Q_2(t) = t + 2t^2$ 1122·, 122·1·, 22·11·
 $Q_3(t) = t + 8t^2 + 6t^3$...

Stirling polynomials

Definition (Gessel-Stanley '78)

Stirling polynomials:

$$Q_n(t) = \sum_{\pi \in \mathcal{Q}_n} t^{\mathsf{des}(\pi)}$$

Example

$$Q_1(t) = t$$
 11.
 $Q_2(t) = t + 2t^2$ 1122., 122.11.
 $Q_3(t) = t + 8t^2 + 6t^3$...

Theorem (Gessel-Stanley '78)

$$\sum_{m>0} S(m+n,m) t^m = \frac{Q_n(t)}{(1-t)^{2n+1}}.$$

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

• Bóna '08: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

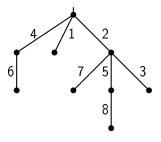
- Bóna '08: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.
- Janson '08: The joint distribution of ascents, descents and plateaus on Q_n is asymptotically normal.

There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- Bóna '08: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- Brenti '89, Bóna '08: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.
- Janson '08: The joint distribution of ascents, descents and plateaus on Q_n is asymptotically normal.
- The coefficients of $Q_n(t)$ are sometimes called second-order Eulerian numbers.

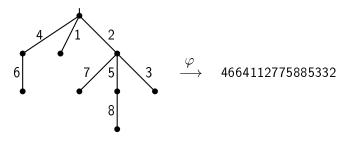
Stirling permutations and trees

 $\mathcal{I}_n = \mathsf{set}$ of increasing edge-labeled plane rooted trees with n edges.



Stirling permutations and trees

 $\mathcal{I}_n = \text{set of increasing edge-labeled plane rooted trees with } n \text{ edges.}$

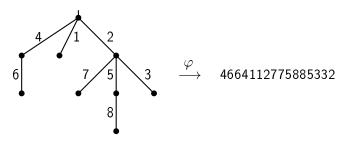


Theorem (Koganov '96, Janson '08)

There is a bijection $\varphi: \mathcal{I}_n \longrightarrow \mathcal{Q}_n$ obtained by traversing the edges of the tree along a depth-first walk from left to right, and recording their labels.

Stirling permutations and trees

 $\mathcal{I}_n = \text{set of increasing edge-labeled plane rooted trees with } n \text{ edges.}$



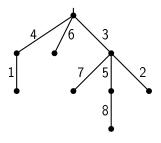
Theorem (Koganov '96, Janson '08)

There is a bijection $\varphi: \mathcal{I}_n \longrightarrow \mathcal{Q}_n$ obtained by traversing the edges of the tree along a depth-first walk from left to right, and recording their labels.

If we remove the increasing condition on the trees, what is the image of φ ?

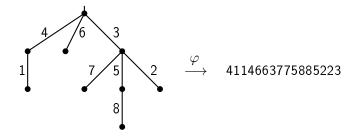
Removing the increasing condition

 $\mathcal{T}_n = \text{set of edge-labeled plane rooted trees with } n \text{ edges.}$



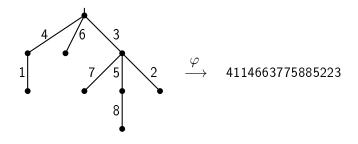
Removing the increasing condition

 $\mathcal{T}_n = \mathsf{set}$ of edge-labeled plane rooted trees with n edges.



Removing the increasing condition

 $\mathcal{T}_n = \text{set of edge-labeled plane rooted trees with } n \text{ edges.}$



Theorem (Archer-Gregory-Pennington-Slayden '19)

 φ is a bijection between \mathcal{T}_n and $\overline{\mathcal{Q}}_n$ (to be defined in the next slide).

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \dots, n, n\}$ that avoids the patterns 1212 and 2121.

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

Example

322113

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

Example

 $322113 \in \overline{\mathcal{Q}}_3$,

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

$$322113 \in \overline{\mathcal{Q}}_3$$
, 312321

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

$$322113 \in \overline{\mathcal{Q}}_3$$
, $312321 \notin \overline{\mathcal{Q}}_3$,

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

$$322113 \in \overline{\mathcal{Q}}_3, \quad \ 312321 \notin \overline{\mathcal{Q}}_3, \quad \ \overline{\mathcal{Q}}_2 = \{1122, 1221, 2211, 2112\}.$$

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, ..., n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \mathsf{set} \ \mathsf{of} \ \mathsf{quasi-Stirling} \ \mathsf{permutations} \ \mathsf{of} \ \{1,1,2,2,\ldots,n,n\}.$

Example

$$322113 \in \overline{\mathcal{Q}}_3, \quad \ 312321 \notin \overline{\mathcal{Q}}_3, \quad \ \overline{\mathcal{Q}}_2 = \{1122, 1221, 2211, 2112\}.$$

The number of unlabeled plane rooted trees with n edges is the Catalan number C_n .

Definition (Archer-Gregory-Pennington-Slayden '19)

A quasi-Stirling permutation is a permutation of the multiset $\{1, 1, 2, 2, \ldots, n, n\}$ that avoids the patterns 1212 and 2121.

In other words, it does not have four positions $i < j < k < \ell$ with $\pi_i = \pi_k$ and $\pi_j = \pi_\ell$.

 $\overline{\mathcal{Q}}_n = \text{set of quasi-Stirling permutations of } \{1, 1, 2, 2, \dots, n, n\}.$

Example

$$322113 \in \overline{\mathcal{Q}}_3, \quad \ 312321 \notin \overline{\mathcal{Q}}_3, \quad \ \overline{\mathcal{Q}}_2 = \{1122, 1221, 2211, 2112\}.$$

The number of unlabeled plane rooted trees with n edges is the Catalan number C_n . It follows from the bijection that

$$|\overline{\mathcal{Q}}_n| = n! C_n = \frac{(2n)!}{(n+1)!}.$$

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

```
Set of \pi \in \overline{\mathcal{Q}}_3 with des(\pi)=1: \{112233\} 1 with des(\pi)=2: 13 \{112332,113223,113322,122133,122331,133122,211233,221133,223113,223311,233112,311223,331122\} with des(\pi)=3: 16 \{123321,132231,133221,211332,213312,221331,231132,233211,311322,312213,322113,322311,331221,332112,332211\}
```

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Example

```
Set of \pi \in \overline{\mathcal{Q}}_3 with des(\pi) = 1: \{112233\} 1 with des(\pi) = 2: \{112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133, 223113, 223311, 233112, 311223, 331122\} with des(\pi) = 3: 16 \{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}
```

Fact: For all $\pi \in \overline{\mathcal{Q}}_n$, we have $\operatorname{des}(\pi) \leq n$.

Conjecture (Archer-Gregory-Pennington-Slayden '19)

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Example

Set of
$$\pi \in \overline{\mathcal{Q}}_3$$
 with des $(\pi) = 1$: $\{112233\}$ 1 with des $(\pi) = 2$: $\{112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133, 223113, 223311, 233112, 311223, 331122\}$ with des $(\pi) = 3$: 16 $\{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}$

Fact: For all $\pi \in \overline{\mathcal{Q}}_n$, we have $\operatorname{des}(\pi) \leq n$.

To prove this conjecture, we look at how descents are transformed by the bijection φ .

Lemma

If
$$T\in\mathcal{T}_n$$
 and $\pi=arphi(T)\in\overline{\mathcal{Q}}_n$, then
$$\mathsf{des}(\pi)=\mathsf{cdes}(T),$$

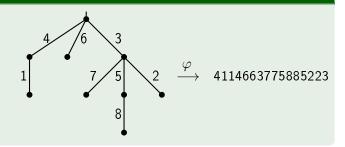
where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Lemma

If $T\in\mathcal{T}_n$ and $\pi=arphi(T)\in\overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

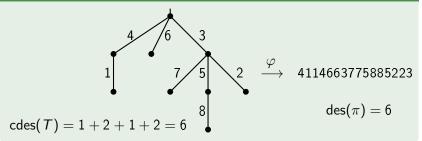


Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

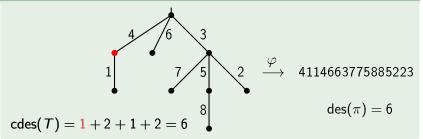


Lemma

If $T\in\mathcal{T}_n$ and $\pi=arphi(T)\in\overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

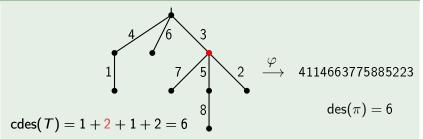


Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

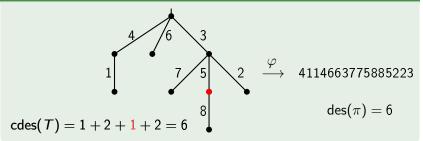


Lemma

If $T\in\mathcal{T}_n$ and $\pi=arphi(T)\in\overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

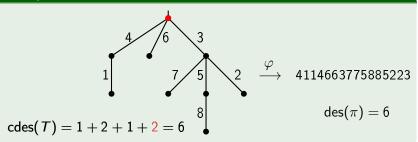


Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \overline{\mathcal{Q}}_n$, then

$$\mathsf{des}(\pi) = \mathsf{cdes}(T),$$

where cdes(T) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.



Theorem

The number of $\pi \in \overline{\mathbb{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

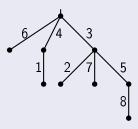
Equivalent to counting $T \in \mathcal{T}_n$ with cdes(T) = n,

Theorem

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with cdes(T) = n, i.e., trees where the number of cyclic descents around each vertex is maximized.

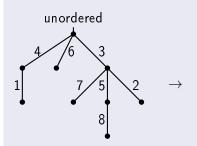


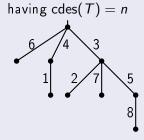
Theorem

The number of $\pi \in \overline{\mathcal{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with cdes(T) = n, i.e., trees where the number of cyclic descents around each vertex is maximized. Such trees are in bijection with *unordered* trees:



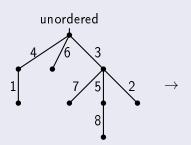


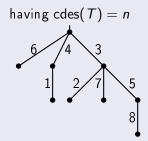
Theorem

The number of $\pi \in \overline{\mathbb{Q}}_n$ with $\operatorname{des}(\pi) = n$ is equal to $(n+1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with cdes(T) = n, i.e., trees where the number of cyclic descents around each vertex is maximized. Such trees are in bijection with unordered trees:





By Cayley's formula, there are $(n+1)^{n-1}$ such trees.

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_n$.

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_n$.

Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{\mathcal{Q}}_n} t^{\mathsf{des}(\pi)}.$$

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_n$.

Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{\mathcal{Q}}_n} t^{\mathsf{des}(\pi)}.$$

$$\overline{Q}_1(t)=t, \qquad \overline{Q}_2(t)=t+3t^2, \qquad \overline{Q}_3(t)=t+13t^2+16t^3, \quad \dots$$

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_n$.

Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{\mathcal{Q}}_n} t^{\mathsf{des}(\pi)}.$$

Example

$$\overline{Q}_1(t)=t, \qquad \overline{Q}_2(t)=t+3t^2, \qquad \overline{Q}_3(t)=t+13t^2+16t^3, \quad \dots$$

Define their EGF

$$\overline{Q}(t,z) = \sum_{n>0} \overline{Q}_n(t) \frac{z^n}{n!}.$$

Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on $\overline{\mathcal{Q}}_n$.

Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{\mathcal{Q}}_n} t^{\mathsf{des}(\pi)}.$$

Example

$$\overline{Q}_1(t)=t, \qquad \overline{Q}_2(t)=t+3t^2, \qquad \overline{Q}_3(t)=t+13t^2+16t^3, \quad \dots$$

Define their EGF

$$\overline{Q}(t,z) = \sum_{n>0} \overline{Q}_n(t) \frac{z^n}{n!}.$$

Recall the Eulerian polynomials $A_n(t)=\sum_{\pi\in\mathcal{S}_n}t^{\mathsf{des}(\pi)}$ and their EGF

$$A(t,z) = \sum_{n>0} A_n(t) \frac{z^n}{n!} = \frac{1-t}{1-te^{(1-t)z}}.$$

Descents on quasi-Stirling permutations

Theorem

The EGF $\overline{Q}(t,z)$ for quasi-Stirling permutations by the number of descents satisfies the implicit equation

$$\overline{Q}(t,z) = A(t,z\overline{Q}(t,z)),$$

that is,

$$\overline{Q}(t,z) = rac{1-t}{1-te^{(1-t)z}\overline{Q}(t,z)}.$$

Descents on quasi-Stirling permutations

Theorem

The EGF $\overline{Q}(t,z)$ for quasi-Stirling permutations by the number of descents satisfies the implicit equation

$$\overline{Q}(t,z) = A(t,z\overline{Q}(t,z)),$$

that is,

$$\overline{Q}(t,z) = rac{1-t}{1-te^{(1-t)z}\overline{Q}(t,z)}.$$

Its coefficients satisfy

$$\overline{Q}_n(t) = \frac{n!}{n+1} [z^n] A(t,z)^{n+1}.$$

Here $[z^n]F(z)$ denotes the coefficient of z^n in F(z).

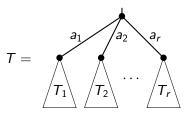
By the bijection φ ,

$$\overline{Q}(t,z) = \sum_{n \geq 0} \sum_{\pi \in \overline{\mathbb{Q}}_n} t^{\mathsf{des}(\pi)} \frac{z^n}{n!} = \sum_{n \geq 0} \sum_{T \in \mathcal{T}_n} t^{\mathsf{cdes}(T)} \frac{z^n}{n!}.$$

By the bijection φ ,

$$\overline{Q}(t,z) = \sum_{n \geq 0} \sum_{\pi \in \overline{Q}_n} t^{\mathsf{des}(\pi)} \frac{z^n}{n!} = \sum_{n \geq 0} \sum_{T \in \mathcal{T}_n} t^{\mathsf{cdes}(T)} \frac{z^n}{n!}.$$

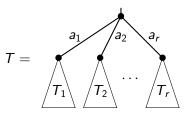
Decompose trees in \mathcal{T}_n as



By the bijection φ ,

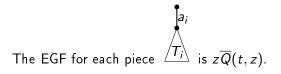
$$\overline{Q}(t,z) = \sum_{n \geq 0} \sum_{\pi \in \overline{Q}_n} t^{\mathsf{des}(\pi)} \frac{z^n}{n!} = \sum_{n \geq 0} \sum_{T \in \mathcal{T}_n} t^{\mathsf{cdes}(T)} \frac{z^n}{n!}.$$

Decompose trees in \mathcal{T}_n as



and use that

$$\mathsf{cdes}(T) = \sum_{i=1}^r (\mathsf{cdes}(\frac{T_i}{T_i}) - 1) + \mathsf{des}(a_1 a_2 \dots a_r)$$



Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$\overline{Q}(t,z) = A(t,z\overline{Q}(t,z)).$$

Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$\overline{Q}(t,z) = A(t,z\overline{Q}(t,z)).$$

Finally, extracting its coefficients using Lagrange inversion gives

$$\overline{Q}_n(t) = \frac{n!}{n+1} [z^n] A(t,z)^{n+1}.$$

Recall the formulas:

$$\sum_{m\geq 0} m^n t^m = rac{A_n(t)}{(1-t)^{n+1}}$$
 (Eulerian)

Recall the formulas:

$$\sum_{m\geq 0} m^n t^m = rac{A_n(t)}{(1-t)^{n+1}}$$
 (Eulerian)

$$\sum_{m\geq 0} S(m+n,m) t^m = \frac{Q_n(t)}{(1-t)^{2n+1}} \qquad \text{(Stirling)}$$

Recall the formulas:

$$\sum_{m>0} m^n t^m = \frac{A_n(t)}{(1-t)^{n+1}} \qquad \text{(Eulerian)}$$

$$\sum_{m\geq 0} S(m+n,m) t^m = \frac{Q_n(t)}{(1-t)^{2n+1}} \qquad \text{(Stirling)}$$

$$\sum_{m \geq 0} ??? t^m = \frac{\overline{Q}_n(t)}{(1-t)^{2n+1}} \qquad \text{(quasi-Stirling)}$$

Recall the formulas:

$$\sum_{m>0} m^n t^m = \frac{A_n(t)}{(1-t)^{n+1}} \qquad \text{(Eulerian)}$$

$$\sum_{m\geq 0} S(m+n,m) t^m = \frac{Q_n(t)}{(1-t)^{2n+1}}$$
 (Stirling)

Theorem

$$\sum_{m>0} \frac{m^n}{n+1} \binom{m+n}{m} t^m = \frac{\overline{Q}_n(t)}{(1-t)^{2n+1}} \qquad (\textit{quasi-Stirling})$$

```
Recall: i is a descent of \pi if \pi_i > \pi_{i+1} or i = r, i is an ascent of \pi if \pi_i < \pi_{i+1} or i = 0, i is a plateau of \pi if \pi_i = \pi_{i+1}.
```

```
Recall: i is a descent of \pi if \pi_i > \pi_{i+1} or i = r, i is an ascent of \pi if \pi_i < \pi_{i+1} or i = 0, i is a plateau of \pi if \pi_i = \pi_{i+1}.
```

Theorem (Bóna '08)

On average, Stirling permutations in Q_n have (2n+1)/3 ascents, (2n+1)/3 descents, and (2n+1)/3 plateaus.

```
Recall: i is a descent of \pi if \pi_i > \pi_{i+1} or i = r, i is an ascent of \pi if \pi_i < \pi_{i+1} or i = 0, i is a plateau of \pi if \pi_i = \pi_{i+1}.
```

Theorem (Bóna '08)

On average, Stirling permutations in Q_n have (2n+1)/3 ascents, (2n+1)/3 descents, and (2n+1)/3 plateaus.

Theorem

On average, quasi-Stirling permutations in $\overline{\mathcal{Q}}_n$ have (3n+1)/4 ascents, (3n+1)/4 descents, and (n+1)/2 plateaus.

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Brenti '89, Bóna '08)

The same holds for the Stirling polynomials $Q_n(t)$.

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Brenti '89, Bóna '08)

The same holds for the Stirling polynomials $Q_n(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Brenti '89, Bóna '08)

The same holds for the Stirling polynomials $Q_n(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.

Corollary

• The coefficients of $\overline{Q}_n(t)$ are unimodal and log-concave.

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Brenti '89, Bóna '08)

The same holds for the Stirling polynomials $Q_n(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.

Corollary

- The coefficients of $\overline{Q}_n(t)$ are unimodal and log-concave.
- The distribution of the number of descents on \overline{Q}_n is asymptotically normal.

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, ..., n\}$:

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, \ldots, n\}$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, \ldots, n\}$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

 $Q_n^k = \text{set of } k\text{-Stirling permutations.}$

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, \ldots, n\}$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

 $Q_n^k = \text{set of } k\text{-Stirling permutations.}$

Also studied by [Brenti '89, Park '94, Janson-Kuba-Panholzer '11].

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, ..., n\}$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

 $Q_n^k = \text{set of } k\text{-Stirling permutations.}$

Also studied by [Brenti '89, Park '94, Janson-Kuba-Panholzer '11].

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the patterns 1212 and 2121.

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, \ldots, n\}$:

Definition (Gessel-Stanley '78)

A k-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

 $Q_n^k = \text{set of } k\text{-Stirling permutations.}$

Also studied by [Brenti '89, Park '94, Janson-Kuba-Panholzer '11].

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the patterns 1212 and 2121.

 $\overline{\mathcal{Q}}_{n}^{k} = \text{set of } k\text{-quasi-Stirling permutations.}$

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $\{1, 2, \ldots, n\}$:

Definition (Gessel-Stanley '78)

A *k*-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

 $Q_n^k = \text{set of } k\text{-Stirling permutations.}$

Also studied by [Brenti '89, Park '94, Janson-Kuba-Panholzer '11].

Definition

A k-quasi-Stirling permutation is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the patterns 1212 and 2121.

 $\overline{Q}_n^k = \text{set of } k\text{-quasi-Stirling permutations.}$

Note:
$$Q_n^1 = \overline{Q}_n^1 = S_n$$
, $Q_n^2 = Q_n$, $\overline{Q}_n^2 = \overline{Q}_n$.

Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in \mathcal{Q}_n^k can be obtained by inserting the string $n^k = nn \dots n$ into one of the (n-1)k+1 spaces of a permutation in \mathcal{Q}_{n-1}^k , so

$$|Q_n^k| = (k+1)(2k+1)\cdots((n-1)k+1).$$

Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in \mathcal{Q}_n^k can be obtained by inserting the string $n^k = nn \dots n$ into one of the (n-1)k+1 spaces of a permutation in \mathcal{Q}_{n-1}^k , so

$$|\mathcal{Q}_n^k| = (k+1)(2k+1)\cdot\cdots\cdot((n-1)k+1).$$

Theorem

For n > 1 and k > 1,

$$|\overline{\mathcal{Q}}_{n}^{k}| = \frac{(kn)!}{((k-1)n+1)!} = n! \ C_{n,k},$$

where

$$C_{n,k} = \frac{1}{(k-1)n+1} \binom{kn}{n}$$

is the nth k-Catalan number.

k-quasi-Stirling permutations and trees

Gessel'94 & Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.

k-quasi-Stirling permutations and trees

Gessel'94 & Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.

We have extended them to bijections between k-quasi-Stirling permutations and certain trees.

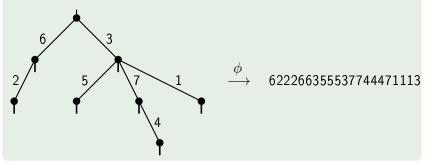
k-quasi-Stirling permutations and trees

Gessel'94 & Janson-Kuba-Panholzer'11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.

We have extended them to bijections between k-quasi-Stirling permutations and certain trees.

Example

A bijection between *compartmented trees* and 3-quasi-Stirling permutations:



Let $asc(\pi)$ and $plat(\pi)$ be the number of ascents and plateaus of π .

Let $asc(\pi)$ and $plat(\pi)$ be the number of ascents and plateaus of π .

Define the multivariate k-quasi-Stirling polynomials

$$\overline{P}_n^{(k)}(q,t,u) = \sum_{\pi \in \overline{\mathcal{Q}}_n^k} q^{\mathsf{asc}(\pi)} t^{\mathsf{des}(\pi)} u^{\mathsf{plat}(\pi)},$$

and their EGF

$$\overline{P}^{(k)}(q,t,u;z) = \sum_{n>0} \overline{P}_n^{(k)}(q,t,u) \frac{z^n}{n!}.$$

This is the most general version of our main result:

Theorem

$$\overline{P}^{(k)}(q,t,u;z)$$
 satisfies the implicit equation

$$\overline{P}^{(k)}(q,t,u;z) = 1 - q + \frac{q(q-t)}{q - te^{(q-t)z(\overline{P}^{(k)}(q,t,u;z)-1+u)^{k-1}}}.$$

This is the most general version of our main result:

Theorem

 $\overline{P}^{(k)}(q,t,u;z)$ satisfies the implicit equation

$$\overline{P}^{(k)}(q,t,u;z) = 1 - q + \frac{q(q-t)}{q - te^{(q-t)z(\overline{P}^{(k)}(q,t,u;z)-1+u)^{k-1}}}.$$

Its coefficients satisfy

$$\overline{P}_n^{(k)}(q,t,u) = \frac{n!}{(k-1)n+1} [z^n] \left(u - q + \frac{q(q-t)}{q - te^{(q-t)z}} \right)^{(k-1)n+1}.$$

This is the most general version of our main result:

Theorem

 $\overline{P}^{(k)}(q,t,u;z)$ satisfies the implicit equation

$$\overline{P}^{(k)}(q,t,u;z) = 1 - q + \frac{q(q-t)}{q - te^{(q-t)z(\overline{P}^{(k)}(q,t,u;z)-1+u)^{k-1}}}.$$

Its coefficients satisfy

$$\overline{P}_n^{(k)}(q,t,u) = \frac{n!}{(k-1)n+1} [z^n] \left(u - q + \frac{q(q-t)}{q - te^{(q-t)z}} \right)^{(k-1)n+1}.$$

The proof follows ascents, descents and plateaus through the bijection ϕ , and it uses a decomposition of compartmented trees.

Quasi-Stirling permutations of $\{1, 1, 2, 2, ..., n, n\}$ avoid 1212 and 2121, so we can think of them as labeled *non-crossing* matchings.

Quasi-Stirling permutations of $\{1, 1, 2, 2, ..., n, n\}$ avoid 1212 and 2121, so we can think of them as labeled *non-crossing* matchings.

In work in progress with Kassie Archer, we consider permutations of $\{1, 1, 2, 2, \ldots, n, n\}$ that avoid 1221 and 2112, which correspond to non-nesting matchings. We study the distribution of des on these.

Quasi-Stirling permutations of $\{1, 1, 2, 2, ..., n, n\}$ avoid 1212 and 2121, so we can think of them as labeled *non-crossing* matchings.

In work in progress with Kassie Archer, we consider permutations of $\{1, 1, 2, 2, ..., n, n\}$ that avoid 1221 and 2112, which correspond to non-nesting matchings. We study the distribution of des on these.

 How about labeled matchings that avoid triples of crossing arcs (e.g. 123123) or triples of nesting arcs (e.g. 123321)?

Quasi-Stirling permutations of $\{1, 1, 2, 2, ..., n, n\}$ avoid 1212 and 2121, so we can think of them as labeled *non-crossing* matchings.

In work in progress with Kassie Archer, we consider permutations of $\{1, 1, 2, 2, \ldots, n, n\}$ that avoid 1221 and 2112, which correspond to non-nesting matchings. We study the distribution of des on these.

- How about labeled matchings that avoid triples of crossing arcs (e.g. 123123) or triples of nesting arcs (e.g. 123321)?
- More generally, are there other interesting sets of pattern-avoiding multiset permutations?

Quasi-Stirling permutations of $\{1, 1, 2, 2, ..., n, n\}$ avoid 1212 and 2121, so we can think of them as labeled *non-crossing* matchings.

In work in progress with Kassie Archer, we consider permutations of $\{1, 1, 2, 2, \ldots, n, n\}$ that avoid 1221 and 2112, which correspond to non-nesting matchings. We study the distribution of des on these.

- How about labeled matchings that avoid triples of crossing arcs (e.g. 123123) or triples of nesting arcs (e.g. 123321)?
- More generally, are there other interesting sets of pattern-avoiding multiset permutations?

Thank you