Bijections for derangements and pattern-avoiding inversion sequences

Sergi Elizalde

Dartmouth College

Permutation Patterns 2021 Virtual Workshop

Sergi Elizalde Bijections for derangements and inversion sequences

 S_n = permutations of $\{1, 2, ..., n\}$ *i* is a fixed point of $\pi \in S_n$ if $\pi(i) = i$

$$S_n$$
 = permutations of $\{1, 2, \ldots, n\}$

i is a fixed point of
$$\pi \in S_n$$
 if $\pi(i) = i$

Derangements:

 $\mathcal{D}_n = \{\pi \in \mathcal{S}_n : \pi \text{ has no fixed points}\}$ $d_n = |\mathcal{D}_n|$

Non-derangements:

$$\overline{\mathcal{D}}_n = \mathcal{S}_n \setminus \mathcal{D}_n \qquad \qquad |\overline{\mathcal{D}}_n| = n! - d_n$$

$$S_n$$
 = permutations of $\{1, 2, \ldots, n\}$

i is a fixed point of
$$\pi \in \mathcal{S}_n$$
 if $\pi(i) = i$

Derangements:

 $\mathcal{D}_n = \{\pi \in \mathcal{S}_n : \pi \text{ has no fixed points}\}$ $d_n = |\mathcal{D}_n|$

Non-derangements:

$$\overline{\mathcal{D}}_n = \mathcal{S}_n \setminus \mathcal{D}_n \qquad \qquad |\overline{\mathcal{D}}_n| = n! - d_n$$

Permutations with one fixed point:

 $\mathcal{F}_n = \{\pi \in \mathcal{S}_n : \pi \text{ has exactly one fixed point}\}$ $|\mathcal{F}_n| = n d_{n-1}$

Recurrence 1: For $n \ge 2$,

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

It has a relatively simple bijective proof.

Recurrence 1: For $n \ge 2$,

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

It has a relatively simple bijective proof.

Recurrence 2: For $n \ge 1$,

$$d_n = n d_{n-1} + (-1)^n.$$

A combinatorial proof requires "considerably more work" (Stanley, EC1).

Recurrence 1: For $n \ge 2$,

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

It has a relatively simple bijective proof.

Recurrence 2: For $n \ge 1$,

$$d_n = n d_{n-1} + (-1)^n.$$

A combinatorial proof requires "considerably more work" (Stanley, EC1).

Bijective proofs have been given by Remmel, Wilf, Désarménien, and Benjamin–Ornstein.

Recurrence 1: For $n \ge 2$,

$$d_n = (n-1)(d_{n-1} + d_{n-2}).$$

It has a relatively simple bijective proof.

Recurrence 2: For $n \ge 1$,

$$d_n = n d_{n-1} + (-1)^n.$$

A combinatorial proof requires "considerably more work" (Stanley, EC1).

Bijective proofs have been given by Remmel, Wilf, Désarménien, and Benjamin–Ornstein.

Here we present a new bijective proof of Recurrence 2 that is arguably simpler than these.

A bijective proof of $d_n = n d_{n-1} + (-1)^n$

Recall that $|\mathcal{F}_n| = n d_{n-1}$ counts permutations with one fixed point.

Recall that $|\mathcal{F}_n| = n d_{n-1}$ counts permutations with one fixed point.

We describe a bijection

$$\psi: \mathcal{D}_n^* \to \mathcal{F}_n^*,$$

where

$$\mathcal{D}_n^* = \begin{cases} \mathcal{D}_n \setminus \{(1,2)(3,4)\dots(n-1,n)\} & \text{if } n \text{ even,} \\ \mathcal{D}_n & \text{if } n \text{ odd,} \end{cases}$$
$$\mathcal{F}_n^* = \begin{cases} \mathcal{F}_n & \text{if } n \text{ even,} \\ \mathcal{F}_n \setminus \{(1)(2,3)\dots(n-1,n)\} & \text{if } n \text{ odd.} \end{cases}$$

Write $\pi \in \mathcal{D}_n^*$ in cycle notation so that each cycle begins with its smallest element, and cycles are ordered by increasing first element.

Write $\pi \in \mathcal{D}_n^*$ in cycle notation so that each cycle begins with its smallest element, and cycles are ordered by increasing first element. Let $k \ge 0$ be the largest such that

$$\pi = (1,2)(3,4)\dots(2k-1,2k)$$

Write $\pi \in \mathcal{D}_n^*$ in cycle notation so that each cycle begins with its smallest element, and cycles are ordered by increasing first element. Let $k \ge 0$ be the largest such that

$$\pi = (1,2)(3,4)\ldots(2k-1,2k) \square$$

To define $\psi(\pi) \in \mathcal{F}_n^*$, consider two cases:

• If the cycle containing 2k + 1 has at least 3 elements:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5)\dots(2k,a_1)(2k+1,a_2,\dots,a_j) \square$$

Write $\pi \in \mathcal{D}_n^*$ in cycle notation so that each cycle begins with its smallest element, and cycles are ordered by increasing first element. Let $k \ge 0$ be the largest such that

$$\pi = (1,2)(3,4)\ldots(2k-1,2k) \square$$

To define $\psi(\pi) \in \mathcal{F}_n^*$, consider two cases:

• If the cycle containing 2k + 1 has at least 3 elements:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5) \dots (2k,a_1)(2k+1,a_2,\dots,a_j) \square$$

Otherwise:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1)(2k+2,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5)\dots(2k,2k+1)(2k+2,a_1,a_2,\dots,a_j) \square$$

1 If the cycle containing 2k + 1 has at least 3 elements:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5)\dots(2k,a_1)(2k+1,a_2,\dots,a_j) \square$$

Otherwise:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1)(2k+2,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5)\dots(2k,2k+1)(2k+2,a_1,a_2,\dots,a_j) \square$$

1 If the cycle containing 2k + 1 has at least 3 elements:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5) \dots (2k,a_1)(2k+1,a_2,\dots,a_j) \square$$

Otherwise:

$$\pi = (1,2)(3,4)\dots(2k-1,2k)(2k+1,a_1)(2k+2,a_2,\dots,a_j) \square$$

$$\psi(\pi) = (1)(2,3)(4,5)\dots(2k,2k+1)(2k+2,a_1,a_2,\dots,a_j) \square$$

Examples:

 $\mathbf{I}_n = \{e_1 e_2 \dots e_n : 0 \le e_i < i \ \forall i\}$

They encode permutations by the number of inversions created by each element.

 $\mathbf{I}_n = \{e_1 e_2 \dots e_n : 0 \le e_i < i \ \forall i\}$

They encode permutations by the number of inversions created by each element.

Pattern avoidance in inversion sequences has been studied by Martinez, Savage, Mansour, Shattuck, Auli, etc.

 $\mathbf{I}_n = \{e_1 e_2 \dots e_n : 0 \le e_i < i \ \forall i\}$

They encode permutations by the number of inversions created by each element.

Pattern avoidance in inversion sequences has been studied by Martinez, Savage, Mansour, Shattuck, Auli, etc.

 $\mathsf{I}_n(\underline{000}) = \{ e \in \mathsf{I}_n : \nexists i \text{ such that } e_i = e_{i+1} = e_{i+2} \}$

 $\mathbf{I}_n = \{e_1 e_2 \dots e_n : 0 \le e_i < i \ \forall i\}$

They encode permutations by the number of inversions created by each element.

Pattern avoidance in inversion sequences has been studied by Martinez, Savage, Mansour, Shattuck, Auli, etc.

$$I_n(\underline{000}) = \{ e \in I_n : \nexists i \text{ such that } e_i = e_{i+1} = e_{i+2} \}$$

Theorem (Auli, E. '19)

$$|\mathbf{I}_n(\underline{000})| = \frac{(n+1)! - d_{n+1}}{n}$$

The original proof was by induction on *n*. Here we provide a bijective proof.

A bijective proof of $|\mathbf{I}_n(\underline{000})| = \frac{(n+1)!-d_{n+1}}{n}$

One can easily show that

$$\frac{(n+1)!-d_{n+1}}{n}=|\overline{\mathcal{D}}_n\sqcup\overline{\mathcal{D}}_{n-1}|,$$

A bijective proof of $|\mathbf{I}_n(\underline{000})| = \frac{(n+1)!-d_{n+1}}{n}$

One can easily show that

$$\frac{(n+1)!-d_{n+1}}{n}=|\overline{\mathcal{D}}_n\sqcup\overline{\mathcal{D}}_{n-1}|,$$

so all we need is a bijection

$$\phi: \mathsf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}.$$

A bijective proof of $|\mathbf{I}_n(\underline{000})| = \frac{(n+1)! - d_{n+1}}{n}$

One can easily show that

$$\frac{(n+1)!-d_{n+1}}{n}=|\overline{\mathcal{D}}_n\sqcup\overline{\mathcal{D}}_{n-1}|,$$

so all we need is a bijection

$$\phi: \mathsf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}.$$

Step 1: Encode $e \in I_n(\underline{000})$ as a word $w = w_2 \dots w_n$ with $w_k \in [k-1] \cup \{R\}$ having no two consecutive Rs, by letting

$$w_{k} = \begin{cases} R & \text{if } e_{k} = e_{k-1}, \\ e_{k} & \text{if } e_{k} > e_{k-1}, \\ e_{k} + 1 & \text{if } e_{k} < e_{k-1}. \end{cases}$$

The bijection $\phi : \mathbf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

Step 2: Read *w* from left to right and build a sequence of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$, where $\sigma_k \in \overline{\mathcal{D}}_k \sqcup \overline{\mathcal{D}}_{k-1}$ for all *k*.

The bijection $\phi : \mathbf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

Step 2: Read *w* from left to right and build a sequence of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$, where $\sigma_k \in \overline{\mathcal{D}}_k \sqcup \overline{\mathcal{D}}_{k-1}$ for all *k*.

Set $\sigma_1 = 1 \in \overline{\mathcal{D}}_1$. Then, for each *k* from 2 to *n*:

• If
$$w_k = R$$
, let $\sigma_k = \sigma_{k-1} \in \overline{\mathcal{D}}_{k-1}$.

The bijection $\phi: \mathbf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

Step 2: Read *w* from left to right and build a sequence of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$, where $\sigma_k \in \overline{\mathcal{D}}_k \sqcup \overline{\mathcal{D}}_{k-1}$ for all *k*.

Set $\sigma_1 = 1 \in \overline{\mathcal{D}}_1$. Then, for each k from 2 to n:

• If
$$w_k = R$$
, let $\sigma_k = \sigma_{k-1} \in \overline{\mathcal{D}}_{k-1}$.

• Otherwise, let

$$\sigma_k = \begin{cases} (w_k, k)\sigma_{k-1} & \text{if } w_{k-1} \neq R \text{ and } \sigma_{k-1} \in \overline{\mathcal{D}}_{k-1} \text{ has} \\ & \text{fixed points other than } w_k, \\ (w_k, k-1)\sigma_{k-1} & \text{otherwise}, \end{cases}$$

where $(a, b)\sigma_{k-1}$ is defined by viewing σ_{k-1} as an element of $\overline{\mathcal{D}}_k$ (where k is fixed), and switching the entries a and b.

The bijection $\phi : \mathbf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

Step 2: Read *w* from left to right and build a sequence of permutations $\sigma_1, \sigma_2, \ldots, \sigma_n$, where $\sigma_k \in \overline{\mathcal{D}}_k \sqcup \overline{\mathcal{D}}_{k-1}$ for all *k*.

Set $\sigma_1 = 1 \in \overline{\mathcal{D}}_1$. Then, for each k from 2 to n:

• If
$$w_k = R$$
, let $\sigma_k = \sigma_{k-1} \in \overline{\mathcal{D}}_{k-1}$.

• Otherwise, let

$$\sigma_k = \begin{cases} (w_k, k)\sigma_{k-1} & \text{if } w_{k-1} \neq R \text{ and } \sigma_{k-1} \in \overline{\mathcal{D}}_{k-1} \text{ has} \\ & \text{fixed points other than } w_k, \\ (w_k, k-1)\sigma_{k-1} & \text{otherwise}, \end{cases}$$

where $(a, b)\sigma_{k-1}$ is defined by viewing σ_{k-1} as an element of $\overline{\mathcal{D}}_k$ (where k is fixed), and switching the entries a and b.

Finally, let $\phi(e) = \sigma_n$.

Examples of $\phi: \mathbf{I}_n(\underline{000}) \to \overline{\mathcal{D}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

k	e_k	Wk	σ_k
1	0		1
2	0	R	1
3	1	1	(1, 2)123 = 213
4	3	3	(3,3)2134 = 2134
5	2	3	(3,5)21345 = 21543
6	2	R	$21543=\phi(e)$

$$e = 001322 \quad \mapsto$$

Examples of $\phi : \mathbf{I}_n(\underline{000}) \to \overline{\overline{\mathcal{D}}}_n \sqcup \overline{\mathcal{D}}_{n-1}$

		k	e _k	w _k	σ_k
		1	0		1
		2	0	R	1
e = 001322	\mapsto	3	1	1	(1, 2)123 = 213
		4	3	3	(3,3)2134 = 2134
		5	2	3	(3,5)21345 = 21543
		6	2	R	$21543 = \phi(e)$
		k	e _k	w _k	σ_k
		1	0		1
			-		L L
		2	1	1	(1,1)12 = 12
a = 0102230		2 3	1 0	1	-
<i>e</i> = 0102230	\mapsto				(1,1)12 = 12
<i>e</i> = 0102230	\mapsto	3	0	1	(1,1)12 = 12 (1,3)123 = 321
<i>e</i> = 0102230	\mapsto	3 4	02	1 2	(1,1)12 = 12 (1,3)123 = 321 (2,3)3214 = 2314

Thank you