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Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des() =

5

asc() =

3

plat() =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des() =

5

asc() =

3

plat() =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des() =

5

asc() =

3

plat() =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des() =

5

asc() =

3

plat() =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des(36522131) =

5

asc(36522131) =

3

plat(36522131) =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des(36·5·22·13·1·) =

5

asc(36522131) =

3

plat(36522131) =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des(36·5·22·13·1·) = 5
asc(36522131) =

3

plat(36522131) =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des(36·5·22·13·1·) = 5
asc(·3·65221·31) = 3
plat(36522131) =

1

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 3 / 32



Descents and plateaus

De�nition

Let π = π1π2 . . . πm be a sequence of positive integers. We say that i is a

descent if πi > πi+1 or i = m,

ascent if πi < πi+1 or i = 0,

plateau if πi = πi+1.

des(π) = number of descents of π
asc(π) = number of ascents of π
plat(π) = number of plateaus of π

Example

des(36·5·22·13·1·) = 5
asc(·3·65221·31) = 3
plat(3652·2131) = 1
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Eulerian polynomials

[n] = {1, 2, . . . , n}
Sn = set of permutations of [n]

De�nition

Eulerian polynomials:

An(t) =
∑
π∈Sn

tdes(π)

Example

A1(t) = t 1·
A2(t) = t + t2 12·, 2·1·
A3(t) = t + 4t2 + t3 123·, 13·2·, 2·13·, 23·1·, 3·12·, 3·2·1·
A4(t) = t + 11t2 + 11t3 + t4 . . .

These polynomials appear in work of Euler from 1755.
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Eulerian polynomials
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Eulerian polynomials

Euler was considering the series∑
m≥0

mtm =
t

(1− t)2∑
m≥0

m2tm =
t + t2

(1− t)3∑
m≥0

m3tm =
t + 4t2 + t3

(1− t)4∑
m≥0

m4tm =
t + 11t2 + 11t3 + t4

(1− t)5
. . .

In general, ∑
m≥0

mntm =
An(t)

(1− t)n+1
.

This can be proved by induction on n, di�erentiating both sides.
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Generating function for Eulerian polynomials

Let

A(t, z) =
∑
n≥0

An(t)
zn

n!

be the exponential generating function (EGF) for the Eulerian polynomials.

It is known that

A(t, z) =
1− t

1− te(1−t)z
.
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Stirling numbers

De�nition

The Stirling number of the second kind S(n, k) is the number of partitions
of the set {1, 2, . . . , n} into k blocks.

Example: S(3, 2) = 3. {1, 2} ∪ {3}, {1, 3} ∪ {2}, {2, 3} ∪ {1}.
In 1978, Gessel and Stanley considered the series∑

m≥0

S(m + 1,m) tm =
t

(1− t)3∑
m≥0

S(m + 2,m) tm =
t + 2t2

(1− t)5∑
m≥0

S(m + 3,m) tm =
t + 8t2 + 6t3

(1− t)7∑
m≥0

S(m + 4,m) tm =
t + 22t2 + 58t3 + 24t4

(1− t)9
. . .

What are the polynomials in the numerator? Why positive coe�cients?
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Stirling permutations

Consider the multiset [n] ⊔ [n] := {1, 1, 2, 2, . . . , n, n}.

De�nition (Gessel�Stanley '78)

A Stirling permutation is a permutation of [n] ⊔ [n] that avoids the pattern
212.

In other words, if π1π2 . . . π2n is a Stirling permutation, there do not exist
i < j < k such that πi = πk > πj .

Qn = set of Stirling permutations of [n] ⊔ [n].

Example

13324421 ∈ Q4, 312321 /∈ Q3, Q2 = {1122, 1221, 2211}.

We have |Qn| = (2n − 1) · (2n − 3) · · · · · 3 · 1, since every permutation in
Qn can be obtained by inserting nn into one of the 2n − 1 spaces of a
permutation in Qn−1.
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Stirling polynomials

De�nition (Gessel�Stanley '78)

Stirling polynomials:
Qn(t) =

∑
π∈Qn

tdes(π)

Example

Q1(t) = t 11·
Q2(t) = t + 2t2 1122·, 122·1·, 22·11·
Q3(t) = t + 8t2 + 6t3 . . .

Theorem (Gessel�Stanley '78)∑
m≥0

S(m + n,m) tm =
Qn(t)

(1− t)2n+1
.
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Literature on Stirling permutations

There is an extensive literature on Stirling permutations. Some work
relevant to this talk:

Bóna '08: Qn(t) also gives the enumeration of Qn by the number of
plateaus, that is, positions i such that πi = πi+1.

Brenti '89, Bóna '08: Qn(t) has only real roots, and the distribution
of des on Qn is asymptotically normal.

Janson '08: The joint distribution of ascents, descents and plateaus on
Qn is asymptotically normal.

The coe�cients of Qn(t) are sometimes called second-order Eulerian
numbers.
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The coe�cients of Qn(t) are sometimes called second-order Eulerian
numbers.
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Stirling permutations and trees

In = set of increasing edge-labeled plane rooted trees with n edges.

4 1

7 3

2

5

8

6

−→ 4664112775885332
φ

Theorem (Koganov '96, Janson '08)

There is a bijection φ : In −→ Qn obtained by traversing the edges of the

tree along a depth-�rst walk from left to right, and recording their labels.

If we remove the increasing condition on the trees, what is the image of φ?
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Removing the increasing condition

Tn = set of edge-labeled plane rooted trees with n edges.

4 6

7

3

25

8

1

−→ 4114663775885223
φ

Theorem (Archer�Gregory�Pennington�Slayden '19)

φ is a bijection between Tn and Qn (to be de�ned on the next page).
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Noncrossing permutations

De�nition (Archer�Gregory�Pennington�Slayden '19)

A quasi-Stirling (or noncrossing) permutation is a permutation of the
multiset [n] ⊔ [n] that avoids the patterns 1212 and 2121.

Equivalently, there do not exist i < j < k < ℓ with πi = πk and πj = πℓ.

Qn = set of noncrossing permutations of [n] ⊔ [n].

Example

4431152253 ∈ Q5, 312321 /∈ Q3, Q2 = {1122, 1221, 2211, 2112}.

4 4 3 1 1 5 2 2 5 3 3 1 2 3 2 1

They are in bijection with labeled noncrossing matchings. It follows that

|Qn| = n!Catn =
(2n)!

(n + 1)!
.
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Noncrossing permutations with most descents

One can show that, for any π ∈ Qn, we have des(π) ≤ n.

Theorem (E. '21)

The number of π ∈ Qn with des(π) = n is equal to (n + 1)n−1.

This had been conjectured by Archer�Gregory�Pennington�Slayden '19.

Prof idea:

Translate the statistic des into a statistic on trees via the bijection φ.

Show that trees that maximize this statistic are in bijection with
Cayley trees, which are counted by (n + 1)n−1.
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Descents on noncrossing permutations

We are interested not only in how many permutations maximize des, but
more generally in the distribution of des over Qn.

De�ne the quasi-Stirling polynomials

Qn(t) =
∑
π∈Qn

tdes(π).

Example

Q1(t) = t, Q2(t) = t + 3t2, Q3(t) = t + 13t2 + 16t3, . . .

De�ne their EGF
Q(t, z) =

∑
n≥0

Qn(t)
zn

n!
.

Recall the Eulerian polynomials An(t) =
∑

π∈Sn
tdes(π) and their EGF

A(t, z) =
∑
n≥0

An(t)
zn

n!
=

1− t

1− te(1−t)z
.
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Descents on noncrossing permutations

Theorem (E. '21)

The EGF Q(t, z) for noncrossing permutations by the number of descents

satis�es the implicit equation

Q(t, z) = A(t, zQ(t, z)),

that is,

Q(t, z) =
1− t

1− te(1−t)zQ(t,z)
.

Its coe�cients satisfy

Qn(t) =
n!

n + 1
[zn]A(t, z)n+1.

Here [zn]F (z) denotes the coe�cient of zn in F (z).
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Consequences

Recall the formulas:∑
m≥0

mntm =
An(t)

(1− t)n+1
(Eulerian)

∑
m≥0

S(m + n,m) tm =
Qn(t)

(1− t)2n+1
(Stirling)
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(
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m
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Properties of quasi-Stirling polynomials

Theorem (Bóna '08)

On average, Stirling permutations in Qn have (2n + 1)/3 ascents,

(2n + 1)/3 descents, and (2n + 1)/3 plateaus.

Theorem (E. '21)

On average, noncrossing permutations in Qn have (3n + 1)/4 ascents,

(3n + 1)/4 descents, and (n + 1)/2 plateaus.

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 19 / 32



Properties of quasi-Stirling polynomials

Theorem (Bóna '08)

On average, Stirling permutations in Qn have (2n + 1)/3 ascents,

(2n + 1)/3 descents, and (2n + 1)/3 plateaus.

Theorem (E. '21)

On average, noncrossing permutations in Qn have (3n + 1)/4 ascents,

(3n + 1)/4 descents, and (n + 1)/2 plateaus.

Sergi Elizalde (Dartmouth College) Noncrossing and nonnesting permutations QMUL, February 2023 19 / 32



Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials An(t) are real, distinct, and

nonpositive.

Theorem (Brenti '89, Bóna '08)

The same holds for the Stirling polynomials Qn(t).

Theorem (E. '21)

The same holds for the quasi-Stirling polynomials Qn(t).

Corollary

The coe�cients of Qn(t) are unimodal and log-concave.

The distribution of the number of descents on Qn is asymptotically

normal.
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k-Stirling and k-quasi-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling
permutations by allowing k copies of each element in {1, 2, . . . , n}:

De�nition (Gessel�Stanley '78)

A k-Stirling permutation is a permutation of the multiset {1k , 2k , . . . , nk}
that avoids the pattern 212.

Qk
n = set of k-Stirling permutations.

Also studied by [Brenti '89, Park '94, Janson�Kuba�Panholzer '11].

De�nition

A k-quasi-Stirling permutation is a permutation of the multiset
{1k , 2k , . . . , nk} that avoids the patterns 1212 and 2121.

Qk
n = set of k-quasi-Stirling permutations.

Note: Q1
n = Q1

n = Sn, Q2
n = Qn, Q2

n = Qn.
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Qk
n = set of k-quasi-Stirling permutations.
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Generalization to k-Stirling and k-quasi-Stirling

Our results for k = 2 generalize to arbitrary k .

To obtain them, we generalize φ to a bijection between k-quasi-Stirling
permutations and certain trees.

Example

A bijection between compartmented trees and 3-quasi-Stirling
permutations:

5

6

2 1

3

4

7 −→ 622266355537744471113
ϕ

Additionally, we can add a variable to the generating functions that keeps
track of the number of plateaus.
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Nonnesting permutations

De�nition

A nonnesting permutation (or canon permutation) is a permutation of the
multiset [n] ⊔ [n] that avoids the patterns 1221 and 2112.

Equivalently, there do not exist i < j < k < ℓ with πi = πℓ and πj = πk .

Cn = set of nonnesting permutations of [n] ⊔ [n].

Example

3532521414 ∈ C5, 312321 /∈ C3.

3 5 3 2 5 2 1 4 1 4 3 1 2 3 2 1

They are in bijection with labeled nonnesting matchings, so again

|Cn| = n!Catn =
(2n)!

(n + 1)!
.
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Nonnesting permutations

A permutation π of [n] ⊔ [n] is nonnesting i� the subsequence of �rst
copies of each entry coincides with the subsequence of second copies.

We denote this subsequence by s(π).

Example

π = 3532521414 ∈ C5,

s(π) = 35214 ∈ S5

.

Our goal is to count nonnesting permutations with respect to the number
of descents and plateaus. Consider the polynomials

Cn(t, u) =
∑
π∈Cn

tdes(π)uplat(π).

Even though |Cn| = |Qn|, we have
∑
π∈Cn

tdes(π) ̸=
∑
π∈Qn

tdes(π).
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Dyck paths and Narayana numbers

Let Dn be the set of lattice paths from (0, 0) to (n, n) with steps e = (1, 0)
and n = (0, 1) that do not go above the diagonal y = x .

A peak of D ∈ Dn is an occurrence of en.

A peak is called a low peak if it touches the
diagonal, and a high peak otherwise.

Let lpea(D) and hpea(D) denote the number
of low peaks and high peaks of D,
respectively.

Let
Nn(t, u) =

∑
D∈Dn

thpea(D)ulpea(D).

The coe�cients of Nn(t, t) are the Narayana numbers 1
n

(n
k

)( n
k−1

)
.∑

n≥0

Nn(t, u)z
n =

2

1+ (1+ t − 2u)z +
√

1− 2(1+ t)z + (1− t)2z2
.
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Descents and plateaus on nonnesting permutations

Recall:
Cn(t, u) =

∑
π∈Cn

tdes(π)uplat(π),

An(t) =
∑
π∈Sn

tdes(π),

Nn(t, u) =
∑
D∈Dn

thpea(D)ulpea(D).

Theorem (E. '22)

Cn(t, u) = An(t)Nn(t, u).

Example

C3(t, u) = u3t + (1+ 2u + 4u3)t2 + (5+ 8u + u3)t3 + (5+ 2u)t4 + t5

=
(
t + 4t2 + t3

) (
u3 + (1+ 2u)t + t2

)
.
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Consequences

Since both An(t) and Nn(t, t) are palindromic, so is their product Cn(t, t).

Example

C3(t, t) = t2 + 7t3 + 14t4 + 7t5 + t6 = (t + 4t2 + t3)(t + 3t2 + t3).

Note that
Cn(t, t) =

∑
π∈Cn

tdes(π)tplat(π) =
∑
π∈Cn

twdes(π),

where wdes(π) = des(π) + plat(π) is the number of weak descents of π.

Corollary

The distribution of weak descents on Cn is symmetric: for all r ,

|{π ∈ Cn : wdes(π) = r}| = |{π ∈ Cn : wdes(π) = 2n + 2− r}|.
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Corollary

The distribution of weak descents on Cn is symmetric: for all r ,

|{π ∈ Cn : wdes(π) = r}| = |{π ∈ Cn : wdes(π) = 2n + 2− r}|.
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Consequences

Similarly, since Nn(t, 1) is palindromic, so is An(t)Nn(t, 1) = Cn(t, 1).

Example

C3(t, 1) = 1+ 7t + 14t2 + 7t3 + t4 = (1+ 4t + t2)(1+ 3t + t2).

Corollary

The distribution of descents on Cn is symmetric: for all r ,

|{π ∈ Cn : des(π) = r}| = |{π ∈ Cn : des(π) = 2n − r}|.

We have bijective proofs of these corollaries but they are surprisingly
complicated!
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A re�nement

Partition the set Cn according to the permutation σ ∈ Sn given by the �rst
copy of each entry:

Cσ
n = {π ∈ Cn : s(π) = σ}

Example

3532521414 ∈ C352145

Let
Cσ
n (t, u) =

∑
π∈Cσ

n

tdes(π)uplat(π).

Theorem (E. '22)

For all σ ∈ Sn,

Cσ
n (t, u) = tdes(σ)Nn(t, u).

Summing over σ ∈ Sn, we obtain the previous theorem.
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About the proofs

Using the standard bijection between nonnesting matchings and Dyck
paths, we can represent a nonnesting permutation π ∈ Cn as a Dyck path
D(π) in a grid whose rows and columns are labeled by s(π):

2 5 2 5 3 1 6 3 7 4 1 6 7 4π = D(π)

s(π) = 2
2

5

5

3

3

1

1

6

6

7

7

4

4

Plateaus of π correspond to low peaks of D(π).
But what do descents correspond to?

In the special case that s(π) = 12 . . . n, descents of π correspond to high
peaks of D(π), proving that C 12...n

n (t, u) = tNn(t, u).

In general, for each �xed σ ∈ Sn, we get a di�erent Dyck path statistic.
We prove that they all have a (shifted) Narayana distribution.
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Generalizations

Our theorem generalizes to permutations that have k copies of each
number in [n], for any given k .

However, there is more than one way to generalize the de�nition of
nonnesting.

Instead of requiring avoidance of 1221 and 2112, the �correct�
generalization is the one that arises from the canon interpretation.

Example

353325215241414

In the proof for the general case, the role of Dyck paths is played by
standard Young tableaux of rectangular shape.
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Thank you
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