The probability of avoiding consecutive patterns in the Mallows distribution

Sergi Elizalde

Dartmouth College

Joint work with Harry Crane and Stephen DeSalvo

Joint Mathematics Meetings, Denver, January 2020 Special Session on Analytic and Probabilistic Combinatorics

Definitions

Consecutive patterns

$$\pi = \pi_1 \pi_2 \dots \pi_n \in \mathcal{S}_n, \quad \sigma = \sigma_1 \sigma_2 \dots \sigma_m \in \mathcal{S}_m.$$

Definition

 π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_i \pi_{i+1} \dots \pi_{i+m-1}$ in the same relative order as $\sigma_1 \dots \sigma_m$; otherwise π avoids σ .

In this talk, patterns will mean consecutive patterns.

Definitions

Consecutive patterns

$$\pi = \pi_1 \pi_2 \dots \pi_n \in \mathcal{S}_n, \quad \sigma = \sigma_1 \sigma_2 \dots \sigma_m \in \mathcal{S}_m.$$

Definition

 π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_i \pi_{i+1} \dots \pi_{i+m-1}$ in the same relative order as $\sigma_1 \dots \sigma_m$; otherwise π avoids σ .

In this talk, patterns will mean consecutive patterns.

Example

42531 contains 132

Definitions

Consecutive patterns

$$\pi = \pi_1 \pi_2 \dots \pi_n \in \mathcal{S}_n, \quad \sigma = \sigma_1 \sigma_2 \dots \sigma_m \in \mathcal{S}_m.$$

Definition

 π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_i \pi_{i+1} \dots \pi_{i+m-1}$ in the same relative order as $\sigma_1 \dots \sigma_m$; otherwise π avoids σ .

In this talk, patterns will mean consecutive patterns.

Example

42531 contains 132, but 25134 avoids 132.

Consecutive	patterns
000000	

Growth rates

Definitions

Consecutive patterns in disguise

• Occurrences of 21 are descents.

The number of permutations in S_n with a given number of descents is an Eulerian number, dating back to 1755.

Consecutive patterns in disguise

• Occurrences of 21 are descents.

The number of permutations in S_n with a given number of descents is an Eulerian number, dating back to 1755.

Occurrences of 132 or 231 are peaks: π_i < π_{i+1} > π_{i+2}.
 Peaks play a role in algebraic combinatorics.

Consecutive patterns in disguise

• Occurrences of 21 are descents.

The number of permutations in S_n with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: π_i < π_{i+1} > π_{i+2}.
 Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_1 < \pi_2 > \pi_3 < \pi_4 > \cdots$ or $\pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots$ They are counted by the tangent and secant numbers.

Consecutive patterns in disguise

• Occurrences of 21 are descents.

The number of permutations in S_n with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: π_i < π_{i+1} > π_{i+2}.
 Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_1 < \pi_2 > \pi_3 < \pi_4 > \cdots$ or $\pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots$ They are counted by the tangent and secant numbers.
- Occurrences of 12...*m* are called increasing runs.

Consecutive patterns in disguise

• Occurrences of 21 are descents.

The number of permutations in S_n with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: π_i < π_{i+1} > π_{i+2}. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_1 < \pi_2 > \pi_3 < \pi_4 > \cdots$ or $\pi_1 > \pi_2 < \pi_3 > \pi_4 < \cdots$ They are counted by the tangent and secant numbers.
- Occurrences of 12...*m* are called increasing runs.

Disregarding these implicit appearances, the systematic study of consecutive patterns in permutations started about 20 years ago.

Consecutive	patterns
00 00 000	

Growth rates

Generating functions

Generating functions

For a fixed pattern σ , let

$$\mathcal{S}_n(\sigma) = \{\pi \in \mathcal{S}_n : \pi \text{ avoids } \sigma\}$$

Consecutive patterns ○○●○○○○ The Mallows distribution

Growth rates

Generating functions

Generating functions

For a fixed pattern σ , let

$$S_n(\sigma) = \{\pi \in S_n : \pi \text{ avoids } \sigma\},\$$

$$F_{\sigma}(z) = \sum_{n\geq 0} |\mathcal{S}_n(\sigma)| \, \frac{z^n}{n!}.$$

Consecutive patterns

The Mallows distribution

Growth rates

Generating functions

Generating functions

For a fixed pattern σ , let

$$\mathcal{S}_n(\sigma) = \{\pi \in \mathcal{S}_n : \pi \text{ avoids } \sigma\},$$

$$F_{\sigma}(z) = \sum_{n\geq 0} |\mathcal{S}_n(\sigma)| \frac{z^n}{n!}.$$

Formulas for $F_{\sigma}(z)$ are known for some patterns.

Example

$$F_{132}(z) = \left(1 - \int_0^z e^{-t^2/2} dt\right)^{-1}$$
$$F_{1234}(z) = \frac{2}{\cos z - \sin z + e^{-z}}.$$

Consecutive patterns

The Mallows distribution

Growth rates

Generating functions

Generating functions

For a fixed pattern σ , let

$$\mathcal{S}_n(\sigma) = \{\pi \in \mathcal{S}_n : \pi \text{ avoids } \sigma\},$$

$$F_{\sigma}(z) = \sum_{n\geq 0} |\mathcal{S}_n(\sigma)| \frac{z^n}{n!}.$$

Formulas for $F_{\sigma}(z)$ are known for some patterns.

Example

$$F_{132}(z) = \left(1 - \int_0^z e^{-t^2/2} dt\right)^{-1}$$
$$F_{1234}(z) = \frac{2}{\cos z - \sin z + e^{-z}}.$$

It is convenient to define $\omega_{\sigma}(z) = F_{\sigma}(z)^{-1}$.

Generating functions

Exact enumeration

Theorem (E.-Noy '01)

For
$$\sigma = 12 \dots m$$
, $\omega = \omega_{\sigma}(z)$ satisfies

$$\omega^{(m-1)} + \omega^{(m-2)} + \dots + \omega' + \omega = 0.$$

Generating functions

Exact enumeration

Theorem (E.–Noy '01)

For
$$\sigma = 12 \dots m$$
, $\omega = \omega_{\sigma}(z)$ satisfies

$$\omega^{(m-1)} + \omega^{(m-2)} + \dots + \omega' + \omega = 0.$$

 $\sigma \in S_m$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Generating functions

Exact enumeration

Theorem (E.–Noy '01)

For
$$\sigma = 12 \dots m$$
, $\omega = \omega_{\sigma}(z)$ satisfies

$$\omega^{(m-1)} + \omega^{(m-2)} + \dots + \omega' + \omega = 0.$$

 $\sigma \in S_m$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.–Noy '01)

Let $\sigma \in S_m$ be non-overlapping with $\sigma_1 = 1$, $\sigma_m = b$. Then $\omega = \omega_{\sigma}(z)$ satisfies

$$\omega^{(b)} + \frac{z^{m-b}}{(m-b)!}\omega' = 0.$$

Consecutive	patterns
0000000	

Growth rates

Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ .

Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ .

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ .

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann '18, conjectured by E.–Noy '11)

 $\omega_{1423}(z)$ is not D-finite.

Growth rates

Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ .

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann '18, conjectured by E.–Noy '11)

 $\omega_{1423}(z)$ is not D-finite.

The analogous question in the case of "classical" (i.e. non-consecutive) patterns is still open.

Garrabrant–Pak '15 prove that some generating functions for permutations avoiding sets of classical patterns are not D-finite.

Consecutive patterns ○○○○○●○	The Mallows distribution	Growth rates
Asymptotic behavior		
Asymptotic behavior		

Theorem (E. '05)

For every
$$\sigma$$
, the limit
 $\rho_{\sigma} := \lim_{n \to \infty} \left(\frac{|S_n(\sigma)|}{n!} \right)^{1/n} \quad \text{exists.}$

Consecutive patterns ○○○○○●○	The Mallows distribution	Growth rates
Asymptotic behavior		
Asymptotic behavior		
Theorem (E. '05)		

$\rho_{\sigma} := \lim_{n \to \infty} \left(\frac{|S_n(\sigma)|}{n!} \right)^{1/n} \quad exists.$ This limit is known only for some patterns.

For every σ , the limit

Consecutive patterns ○○○○○●○	The Mallows distribution	Growth rates
Asymptotic behavior		
Asymptotic behavior		

 $\rho_{\sigma} := \lim_{n \to \infty} \left(\frac{|\mathcal{S}_n(\sigma)|}{n!} \right)^{1/n}$

 $\frac{|\mathcal{S}_n(\sigma)|}{n!} = \gamma_{\sigma} \rho_{\sigma}^n + O(\delta^n),$

Theorem (E. '05) For every σ , the limit

For every σ ,

for some constants γ_{σ} and $\delta < \rho_{\sigma}$.

The proof uses methods from spectral theory.

This limit is known only for some patterns.

Theorem (Ehrenborg–Kitaev–Perry '11)

exists.

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Theorem (E. '12 - analytic proof, Perarnau '13 - probabilistic proof)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(\sigma)| \leq |\mathcal{S}_n(12\ldots m)|.$

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Theorem (E. '12 - analytic proof, Perarnau '13 - probabilistic proof)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(\sigma)| \leq |\mathcal{S}_n(12\ldots m)|.$

For what pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ smallest?

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Theorem (E. '12 - analytic proof, Perarnau '13 - probabilistic proof)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(\sigma)| \leq |\mathcal{S}_n(12\ldots m)|.$

For what pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(123\ldots(m-2)m(m-1))| \leq |\mathcal{S}_n(\sigma)|.$

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Theorem (E. '12 - analytic proof, Perarnau '13 - probabilistic proof)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(\sigma)| \leq |\mathcal{S}_n(12\ldots m)|.$

For what pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(123\ldots(m-2)m(m-1))| \leq |\mathcal{S}_n(\sigma)|.$

The proofs use singularity analysis of the generating functions.

Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ largest?

Theorem (E. '12 - analytic proof, Perarnau '13 - probabilistic proof)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(\sigma)| \leq |\mathcal{S}_n(12\ldots m)|.$

For what pattern $\sigma \in S_m$ is $|S_n(\sigma)|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in S_m$ and n large enough,

 $|\mathcal{S}_n(123\ldots(m-2)m(m-1))| \leq |\mathcal{S}_n(\sigma)|.$

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Consecutive patterns	The Mallows distribution ●○○○	Growth rates
The Mallows distribution		

Inversions

Definition

An inversion of $\pi \in S_n$ is a pair (i, j) with i < j and $\pi_i > \pi_j$. Let $inv(\pi) =$ number of inversions of π .

Example: inv(3142) = 3, since 3 > 1, 3 > 2 and 4 > 2.

Consecutive	patterns

The Mallows distribution

Inversions

Definition

An inversion of $\pi \in S_n$ is a pair (i, j) with i < j and $\pi_i > \pi_j$. Let $inv(\pi) =$ number of inversions of π .

Example: inv(3142) = 3, since 3 > 1, 3 > 2 and 4 > 2.

Definition (Mallows '57)

Fix a real parameter q > 0. The Mallows distribution on S_n assigns probability $\sigma^{inv(\pi)}$

$$\frac{q^{(n)}(x)}{[n]_q!}$$

to each $\pi \in \mathcal{S}_n$, where $[n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$

Consecutive	patterns

Inversions

Definition

An inversion of $\pi \in S_n$ is a pair (i, j) with i < j and $\pi_i > \pi_j$. Let $inv(\pi) =$ number of inversions of π .

Example: inv(3142) = 3, since 3 > 1, 3 > 2 and 4 > 2.

Definition (Mallows '57)

Fix a real parameter q > 0. The Mallows distribution on S_n assigns probability $\sigma^{inv(\pi)}$

$$\frac{q^{m}(x)}{[n]_q!}$$

to each $\pi \in \mathcal{S}_n$, where $[n]_q! = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$

It is a canonical statistical model for ranking data.

Generating functions again

The probability that a random permutation from the Mallows distribution avoids $\boldsymbol{\sigma}$ is

$$P_n(\sigma,q) := \sum_{\pi \in \mathcal{S}_n(\sigma)} \frac{q^{\mathsf{inv}(\pi)}}{[n]_q!}.$$

Generating functions again

The probability that a random permutation from the Mallows distribution avoids $\boldsymbol{\sigma}$ is

$$\mathcal{P}_n(\sigma,q) := \sum_{\pi \in \mathcal{S}_n(\sigma)} \frac{q^{\mathsf{inv}(\pi)}}{[n]_q!}.$$

Define

$$F_{\sigma}(q,z) := \sum_{n \ge 0} P_n(\sigma,q) z^n = \sum_{n \ge 0} \sum_{\pi \in \mathcal{S}_n(\sigma)} q^{\operatorname{inv}(\pi)} \frac{z^n}{[n]_q!}.$$

Generating functions again

The probability that a random permutation from the Mallows distribution avoids $\boldsymbol{\sigma}$ is

$$\mathcal{P}_n(\sigma,q) := \sum_{\pi \in \mathcal{S}_n(\sigma)} \frac{q^{\mathsf{inv}(\pi)}}{[n]_q!}.$$

Define

$$F_{\sigma}(q,z) := \sum_{n \ge 0} P_n(\sigma,q) z^n = \sum_{n \ge 0} \sum_{\pi \in \mathcal{S}_n(\sigma)} q^{\mathsf{inv}(\pi)} \frac{z^n}{[n]_q!}.$$

Denoting by σ^r and σ^c the reversal and the complement of $\sigma,$ we have

$$\mathsf{F}_{\sigma}(q,z)=\mathsf{F}_{\sigma^{r}}(1/q,z)=\mathsf{F}_{\sigma^{c}}(1/q,z)=\mathsf{F}_{\sigma^{rc}}(q,z).$$

Consecutive patterns	The Mallows distribution $\circ \circ \bullet \circ$	Growth rates
The generalized cluster method		
Clusters		

Consecutive patterns	The Mallows distribution ○○●○	Growth rates
The generalized cluster method		
Clusters		

A *k*-cluster with respect to $\sigma \in S_m$ is a permutation filled with *k* marked occurrences of σ that overlap with each other.

Consecutive patterns	The Mallows distribution $\circ \circ \bullet \circ$	Growth rates
The generalized cluster method		
Clusters		

A *k*-cluster with respect to $\sigma \in S_m$ is a permutation filled with *k* marked occurrences of σ that overlap with each other.

Example

142536879 is a 3-cluster w.r.t. 1324.

Consecutive patterns	The Mallows distribution $\circ \circ \bullet \circ$	Growth rates
The generalized cluster method		
Clusters		

A *k*-cluster with respect to $\sigma \in S_m$ is a permutation filled with *k* marked occurrences of σ that overlap with each other.

Example

<u>142536879</u> is a 3-cluster w.r.t. 1324.

We refine the cluster method to keep track of inversions, so it applies to the Mallows distribution.

The generalized cluster method

Let
$$c_{\sigma}(i, k, n) = #\{k\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$$

Define the cluster generating function

$$C_{\sigma}(q,t,z) = \sum_{i,k,n} c_{\sigma}(i,k,n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}.$$

The generalized cluster method

Let
$$c_{\sigma}(i, k, n) = #\{k\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$$

Define the cluster generating function

$$C_{\sigma}(q,t,z) = \sum_{i,k,n} c_{\sigma}(i,k,n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}.$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

The generalized cluster method

Let
$$c_{\sigma}(i, k, n) = #\{k\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$$

Define the cluster generating function

$$C_{\sigma}(q,t,z) = \sum_{i,k,n} c_{\sigma}(i,k,n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}.$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

Theorem (Goulden–Jackson '79, Rawlings '11, E. '16)
$$F_{\sigma}(q,z) = rac{1}{1-z-C_{\sigma}(q,-1,z)}.$$

The generalized cluster method

Let
$$c_{\sigma}(i, k, n) = #\{k\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$$

Define the cluster generating function

$$C_{\sigma}(q,t,z) = \sum_{i,k,n} c_{\sigma}(i,k,n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

Theorem (Goulden–Jackson '79, Rawlings '11, E. '16)
$$F_{\sigma}(q,z) = \frac{1}{1-z - C_{\sigma}(q,-1,z)}.$$

The proof combines inclusion-exclusion with some properties of inv.

Consecutive	patterns
0000000	

Growth rates

Growth rates exist

Theorem (Crane–DeSalvo–E. '18)

For every q > 0 and every pattern σ , the limit

$$\rho_{\sigma}(q) := \lim_{n \to \infty} P_n(\sigma, q)^{1/n} \quad \text{exists.}$$

Consecutive	patterns
0000000	

Growth rates

Growth rates exist

Theorem (Crane–DeSalvo–E. '18)

For every q > 0 and every pattern σ , the limit

$$\rho_{\sigma}(q) := \lim_{n \to \infty} P_n(\sigma, q)^{1/n} \quad \text{exists.}$$

To plot $\rho_{\sigma}(q)$ as a function of q for $q \in (0, \infty)$, we use the change of variables $x = \frac{q-1}{q+1}$, so that $x \in (-1, 1)$.

Then the symmetry $\rho_{\sigma}(q) = \rho_{\sigma'}(1/q)$ corresponds to the reflection $x \leftrightarrow -x$.

Consecutive	patterns
0000000	

Growth rates

Growth rates exist

Theorem (Crane–DeSalvo–E. '18)

For every q > 0 and every pattern σ , the limit

$$\rho_{\sigma}(q) := \lim_{n \to \infty} P_n(\sigma, q)^{1/n} \quad \text{exists.}$$

To plot $\rho_{\sigma}(q)$ as a function of q for $q \in (0, \infty)$, we use the change of variables $x = \frac{q-1}{q+1}$, so that $x \in (-1, 1)$.

Then the symmetry $\rho_{\sigma}(q) = \rho_{\sigma'}(1/q)$ corresponds to the reflection $x \leftrightarrow -x$.

 $\rho_{\sigma}(q)^{-1}$ is the radius of convergence of $F_{\sigma}(q, z)$ as a function of a complex variable z.

Consecutive patterns

The Mallows distribution

Growth rates ○●○○○○○○○○○

Growth rates

Monotone patterns

Theorem (E. '16)

$$F_{12...m}(q,z) = \left(\sum_{j\geq 0}rac{z^{jm}}{[jm]_q!} - \sum_{j\geq 0}rac{z^{jm+1}}{[jm+1]_q!}
ight)^{-1}$$

Consecutive	patterns

Growth rates

Growth rates

Monotone patterns

Theorem (E. '16)

$$F_{12...m}(q,z) = \left(\sum_{j\geq 0} rac{z^{jm}}{[jm]_q!} - \sum_{j\geq 0} rac{z^{jm+1}}{[jm+1]_q!}
ight)^{-1}$$

We can use this to approximate $\rho_{12...m}(q)$, which is the reciprocal of the smallest positive zero of the denominator.

Consecutive	patterns
0000000	

Growth rates

Growth rates

Monotone patterns

Growth rates

Growth rates

Monotone patterns

Growth rates

Growth rates

Monotone patterns

Conjecture (Crane–DeSalvo–E. '18) If q < q', then $P_n(12...m,q) < P_n(12...m,q')$

and

Sergi Elizalde

 $\rho_{12...m}(q) < \rho_{12...m}(q').$

Consecutive patterns in the Mallows distribution

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

Theorem (Rawlings '07, E. 16)

Let $\sigma = \sigma_1 \dots \sigma_m$ be non-overlapping with $\sigma_1 = 1$, $\sigma_m = b$. Then

$$F_{\sigma}(q,z) = \left(1 - z - \sum_{k \ge 1} \prod_{j=1}^{k-1} \binom{j(m-1) + m - b}{m-b}_q \frac{q^{k \operatorname{inv}(\sigma)}(-1)^k z^{k(m-1)+1}}{[k(m-1)+1]_q!}\right)^{-1}$$

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

Theorem (Rawlings '07, E. 16)

Let $\sigma = \sigma_1 \dots \sigma_m$ be non-overlapping with $\sigma_1 = 1$, $\sigma_m = b$. Then

$$F_{\sigma}(q,z) = \left(1 - z - \sum_{k \ge 1} \prod_{j=1}^{k-1} \binom{j(m-1) + m - b}{m-b}_q \frac{q^{k \operatorname{inv}(\sigma)}(-1)^k z^{k(m-1)+1}}{[k(m-1) + 1]_q!}\right)^{-1}$$

Again, after some painful calculations, we can approximate the smallest positive zero of the denominator to get $\rho_{\sigma}(q)^{-1}$.

Consecutive	patterns
0000000	

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

Consecutive	patterns
0000000	

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

The minimum of $\rho(132, q)$ is attained at $q_0 \approx 0.6447045$, giving a growth rate of $\rho(132, q_0) \approx 0.7665452$.

Consecutive	patterns
0000000	

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

Consecutive patterns

The Mallows distribution

Growth rates

Growth rates

Non-overlapping patterns with $\sigma_1 = 1$

For q = 1, we have $\rho_{1243}(1) < \rho_{1342}(1) = \rho_{1432}(1)$.

Growth rates

Comparisons among patterns

Comparisons among patterns

Theorem (Crane–DeSalvo–E. '18)

For $q \ge 1$ and every n,

$P_n(132, q) \leq P_n(123, q).$

Growth rates

Comparisons among patterns

Comparisons among patterns

Theorem (Crane–DeSalvo–E. '18)

For $q \ge 1$ and every n,

$P_n(132, q) \leq P_n(123, q).$

Conjecture (Crane–DeSalvo–E. '18)

For $q \geq 1$ and every n,

 $P_n(231,q) \leq P_n(132,q).$

Consecutive patterns	The Mallows distribution	Growth rates ○○○○○○●○○○○
Bounds on $ ho_{\sigma}(q)$		
Bounds on $ ho_{\sigma}(oldsymbol{q})$		
Even for patterns for which upper and lower bounds on	$F_{\sigma}(q, z)$ is unknown, we have gen the growth rate $\rho_{\sigma}(q)$.	eral

Consecutive patterns	The Mallows distribution	Growth rates
Bounds on $ ho_{\sigma}(q)$		
Bounds on $ ho_{\sigma}(oldsymbol{q})$		

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

An upper bound is obtained using Suen's inequality.

Consecutive patterns	The Mallows distribution	Growth rates ○○○○○○●○○○○
Bounds on $ ho_{\sigma}(q)$		

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

An upper bound is obtained using Suen's inequality.

Recall: $c_{\sigma}(i, 2, n) = #\{2\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$

$$T_{\sigma}(q) := \sum_{i,n} c_{\sigma}(i,2,n) \frac{q^i}{[n]_q!}.$$

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

An upper bound is obtained using Suen's inequality.

Recall: $c_{\sigma}(i, 2, n) = #\{2\text{-clusters } \pi \in S_n \text{ w.r.t. } \sigma \text{ with } inv(\pi) = i\}.$

$$T_{\sigma}(q) := \sum_{i,n} c_{\sigma}(i,2,n) rac{q^i}{[n]_q!}.$$

Proposition (Crane–DeSalvo–E. '18)

Fix $m \ge 3$, $\sigma \in S_m$ and q > 0. Then

$$ho_{\sigma}(q) \leq \exp\left(-rac{q^{\mathsf{inv}(\sigma)}}{[m]_q!} + \exp\left(4(m-1)rac{q^{\mathsf{inv}(\sigma)}}{[m]_q!}
ight) T_{\sigma}(q)
ight).$$

An lower bound on $\rho_{\sigma}(q)$ is obtained using a version of the Lovász local lemma.

An lower bound on $\rho_{\sigma}(q)$ is obtained using a version of the Lovász local lemma.

Proposition (Crane–DeSalvo–E. '18)
Fix
$$m \ge 3$$
, $\sigma \in S_m$, $q > 0$. Then
 $\rho_{\sigma}(q) \ge 1 - \frac{q^{\text{inv}(\sigma)}}{[m]_q!} \exp\left(\frac{1}{2}\left(1 - \frac{q^{\text{inv}(\sigma)}}{[m]_q!} - \sqrt{1 - (4m - 2)\frac{q^{\text{inv}(\sigma)}}{[m]_q!} + \frac{q^{2 \text{inv}(\sigma)}}{[m]_q!^2}}\right)\right).$

Consecutive patterns	The Mallows distribution	Growth rates
Bounds on $ ho_{\sigma}(q)$		
Bounds on $ ho_{\sigma}(oldsymbol{q})$		

Example: $\sigma = 1432$.

The blue curve is the actual $\rho_{1432}(q)$ computed earlier.

Consecutive patterns	The Mallows distribution	Growth rates ○○○○○○○○○●○
Bounds on $ ho_{\sigma}(q)$		
Bounds on $ ho_{\sigma}(oldsymbol{q})$		

Example: $\sigma = 2413$.

Neither $F_{2413}(q, z)$ nor the growth rate $\rho_{2413}(q)$ are known.

Bounds on $\rho_{\sigma}(q)$

Thank you

Sergi Elizalde Consecutive patterns in the Mallows distribution