The probability of avoiding consecutive patterns in the Mallows distribution

Sergi Elizalde
Dartmouth College

Joint work with Harry Crane and Stephen DeSalvo

Joint Mathematics Meetings, Denver, January 2020
Special Session on Analytic and Probabilistic Combinatorics

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}
$$

Definition

π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$; otherwise π avoids σ.

In this talk, patterns will mean consecutive patterns.

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}
$$

Definition

π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$; otherwise π avoids σ.

In this talk, patterns will mean consecutive patterns.

Example

42531 contains 132

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}
$$

Definition

π contains σ as a consecutive pattern if π has a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$; otherwise π avoids σ.

In this talk, patterns will mean consecutive patterns.

Example

42531 contains 132, but 25134 avoids 132 .

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$.

Peaks play a role in algebraic combinatorics.

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.
- Occurrences of $12 \ldots m$ are called increasing runs.

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.
- Occurrences of $12 \ldots m$ are called increasing runs.

Disregarding these implicit appearances, the systematic study of consecutive patterns in permutations started about 20 years ago.

Consecutive patterns
0000000
Generating functions

Generating functions

For a fixed pattern σ, let

$$
\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\}
$$

Consecutive patterns
000000
Generating functions

Generating functions

For a fixed pattern σ, let

$$
\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\}
$$

$$
F_{\sigma}(z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}
$$

Generating functions

Generating functions

For a fixed pattern σ, let

$$
\begin{gathered}
\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\}, \\
F_{\sigma}(z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}
\end{gathered}
$$

Formulas for $F_{\sigma}(z)$ are known for some patterns.

Example

$$
\begin{gathered}
F_{132}(z)=\left(1-\int_{0}^{z} e^{-t^{2} / 2} d t\right)^{-1} \\
F_{1234}(z)=\frac{2}{\cos z-\sin z+e^{-z}}
\end{gathered}
$$

Generating functions

Generating functions

For a fixed pattern σ, let

$$
\begin{gathered}
\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { avoids } \sigma\right\}, \\
F_{\sigma}(z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}
\end{gathered}
$$

Formulas for $F_{\sigma}(z)$ are known for some patterns.

Example

$$
\begin{gathered}
F_{132}(z)=\left(1-\int_{0}^{z} e^{-t^{2} / 2} d t\right)^{-1} \\
F_{1234}(z)=\frac{2}{\cos z-\sin z+e^{-z}}
\end{gathered}
$$

It is convenient to define $\omega_{\sigma}(z)=F_{\sigma}(z)^{-1}$.

Consecutive patterns
0000000
Generating functions

Exact enumeration

Theorem (E.-Noy '01)

For $\sigma=12 \ldots m, \omega=\omega_{\sigma}(z)$ satisfies

$$
\omega^{(m-1)}+\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega=0 .
$$

Generating functions

Exact enumeration

Theorem (E.-Noy '01)
For $\sigma=12 \ldots m, \omega=\omega_{\sigma}(z)$ satisfies

$$
\omega^{(m-1)}+\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega=0 .
$$

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Exact enumeration

Theorem (E.-Noy '01)

For $\sigma=12 \ldots m, \omega=\omega_{\sigma}(z)$ satisfies

$$
\omega^{(m-1)}+\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega=0 .
$$

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.
Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega=\omega_{\sigma}(z)$ satisfies

$$
\omega^{(b)}+\frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Consecutive patterns
0000 ००
Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ.

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ.

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Generating functions

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ.

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Theorem (Beaton-Conway-Guttmann '18, conjectured by E.-Noy '11)

$\omega_{1423}(z)$ is not D-finite.

Exact enumeration

Similar differential equations are known for $\omega_{\sigma}(z)$ for other patterns σ.

Question: Is $\omega_{\sigma}(z)$ always D-finite (that is, satisfies a linear differential equation with polynomial coefficients)?

Theorem (Beaton-Conway-Guttmann '18, conjectured by E.-Noy '11)

$\omega_{1423}(z)$ is not D-finite.
The analogous question in the case of "classical" (i.e. non-consecutive) patterns is still open.
Garrabrant-Pak '15 prove that some generating functions for permutations avoiding sets of classical patterns are not D-finite.

Consecutive patterns

Asymptotic behavior

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

Consecutive patterns

Asymptotic behavior

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.

Theorem (Ehrenborg-Kitaev-Perry '11)

For every σ,

$$
\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}=\gamma_{\sigma} \rho_{\sigma}^{n}+O\left(\delta^{n}\right)
$$

for some constants γ_{σ} and $\delta<\rho_{\sigma}$.
The proof uses methods from spectral theory.

Consecutive patterns

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12- analytic proof, Perarnau '13-probabilistic proof)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right| .
$$

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12-analytic proof, Perarnau '13-probabilistic proof)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right| .
$$

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12-analytic proof, Perarnau '13-probabilistic proof)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right| .
$$

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(123 \ldots(m-2) m(m-1))\right| \leq\left|\mathcal{S}_{n}(\sigma)\right| .
$$

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12-analytic proof, Perarnau '13-probabilistic proof)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right| .
$$

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(123 \ldots(m-2) m(m-1))\right| \leq\left|\mathcal{S}_{n}(\sigma)\right| .
$$

The proofs use singularity analysis of the generating functions.

The most and the least avoided patterns

For which pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12-analytic proof, Perarnau '13-probabilistic proof)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right| .
$$

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in \mathcal{S}_{m}$ and n large enough,

$$
\left|\mathcal{S}_{n}(123 \ldots(m-2) m(m-1))\right| \leq\left|\mathcal{S}_{n}(\sigma)\right|
$$

The proofs use singularity analysis of the generating functions.
No known analogues for classical (i.e. non-consecutive) patterns.

Inversions

Definition

An inversion of $\pi \in \mathcal{S}_{n}$ is a pair (i, j) with $i<j$ and $\pi_{i}>\pi_{j}$. Let $\operatorname{inv}(\pi)=$ number of inversions of π.

Example: $\operatorname{inv}(3142)=3$, since $3>1,3>2$ and $4>2$.

The Mallows distribution

Inversions

Definition

An inversion of $\pi \in \mathcal{S}_{n}$ is a pair (i, j) with $i<j$ and $\pi_{i}>\pi_{j}$. Let $\operatorname{inv}(\pi)=$ number of inversions of π.

Example: $\operatorname{inv}(3142)=3$, since $3>1,3>2$ and $4>2$.

Definition (Mallows '57)

Fix a real parameter $q>0$. The Mallows distribution on \mathcal{S}_{n} assigns probability

$$
\frac{q^{\operatorname{inv}(\pi)}}{[n]_{q}!}
$$

to each $\pi \in \mathcal{S}_{n}$, where

$$
[n]_{q}!=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

Inversions

Definition

An inversion of $\pi \in \mathcal{S}_{n}$ is a pair (i, j) with $i<j$ and $\pi_{i}>\pi_{j}$. Let $\operatorname{inv}(\pi)=$ number of inversions of π.

Example: $\operatorname{inv}(3142)=3$, since $3>1,3>2$ and $4>2$.

Definition (Mallows '57)

Fix a real parameter $q>0$. The Mallows distribution on \mathcal{S}_{n} assigns probability

$$
\frac{q^{\operatorname{inv}(\pi)}}{[n]_{q}!}
$$

to each $\pi \in \mathcal{S}_{n}$, where

$$
[n]_{q}!=(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)
$$

It is a canonical statistical model for ranking data.

Generating functions again

The probability that a random permutation from the Mallows distribution avoids σ is

$$
P_{n}(\sigma, q):=\sum_{\pi \in \mathcal{S}_{n}(\sigma)} \frac{q^{\mathrm{inv}(\pi)}}{[n]_{q}!}
$$

Generating functions again

The probability that a random permutation from the Mallows distribution avoids σ is

$$
P_{n}(\sigma, q):=\sum_{\pi \in \mathcal{S}_{n}(\sigma)} \frac{q^{\operatorname{inv}(\pi)}}{[n]_{q}!}
$$

Define

$$
F_{\sigma}(q, z):=\sum_{n \geq 0} P_{n}(\sigma, q) z^{n}=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}(\sigma)} q^{i n v(\pi)} \frac{z^{n}}{[n]_{q}!} .
$$

Generating functions again

The probability that a random permutation from the Mallows distribution avoids σ is

$$
P_{n}(\sigma, q):=\sum_{\pi \in \mathcal{S}_{n}(\sigma)} \frac{q^{\operatorname{inv}(\pi)}}{[n]_{q}!}
$$

Define

$$
F_{\sigma}(q, z):=\sum_{n \geq 0} P_{n}(\sigma, q) z^{n}=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}(\sigma)} q^{i \operatorname{inv}(\pi)} \frac{z^{n}}{[n]_{q}!}
$$

Denoting by σ^{r} and σ^{c} the reversal and the complement of σ, we have

$$
F_{\sigma}(q, z)=F_{\sigma^{r}}(1 / q, z)=F_{\sigma^{c}}(1 / q, z)=F_{\sigma^{r c}}(q, z)
$$

The generalized cluster method
Clusters

The cluster method of Goulden and Jackson reduces the computation of $F_{\sigma}(z)$ to the enumeration of so-called clusters.

The cluster method of Goulden and Jackson reduces the computation of $F_{\sigma}(z)$ to the enumeration of so-called clusters.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

The cluster method of Goulden and Jackson reduces the computation of $F_{\sigma}(z)$ to the enumeration of so-called clusters.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Example

 $14 \overline{2536} 879$ is a 3 -cluster w.r.t. 1324.The cluster method of Goulden and Jackson reduces the computation of $F_{\sigma}(z)$ to the enumeration of so-called clusters.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Example

$14 \overline{2536} 879$ is a 3 -cluster w.r.t. 1324.

We refine the cluster method to keep track of inversions, so it applies to the Mallows distribution.

The generalized cluster method

The generalized cluster method

Let $c_{\sigma}(i, k, n)=\#\left\{k\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.
Define the cluster generating function

$$
C_{\sigma}(q, t, z)=\sum_{i, k, n} c_{\sigma}(i, k, n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}
$$

The generalized cluster method

Let $\quad c_{\sigma}(i, k, n)=\#\left\{k\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.
Define the cluster generating function

$$
C_{\sigma}(q, t, z)=\sum_{i, k, n} c_{\sigma}(i, k, n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!}
$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

The generalized cluster method

Let $\quad c_{\sigma}(i, k, n)=\#\left\{k\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.
Define the cluster generating function

$$
C_{\sigma}(q, t, z)=\sum_{i, k, n} c_{\sigma}(i, k, n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!} .
$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

Theorem (Goulden-Jackson '79, Rawlings '11, E. '16)

$$
F_{\sigma}(q, z)=\frac{1}{1-z-C_{\sigma}(q,-1, z)}
$$

The generalized cluster method

Let $\quad c_{\sigma}(i, k, n)=\#\left\{k\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.
Define the cluster generating function

$$
C_{\sigma}(q, t, z)=\sum_{i, k, n} c_{\sigma}(i, k, n) q^{i} t^{k} \frac{z^{n}}{[n]_{q}!} .
$$

The generalized cluster method expresses $F_{\sigma}(q, z)$ in terms of the cluster generating function, which is often simpler:

Theorem (Goulden-Jackson '79, Rawlings '11, E. '16)

$$
F_{\sigma}(q, z)=\frac{1}{1-z-C_{\sigma}(q,-1, z)}
$$

The proof combines inclusion-exclusion with some properties of inv.

Growth rates

Growth rates exist

Theorem (Crane-DeSalvo-E. '18)

For every $q>0$ and every pattern σ, the limit

$$
\rho_{\sigma}(q):=\lim _{n \rightarrow \infty} P_{n}(\sigma, q)^{1 / n} \quad \text { exists. }
$$

Growth rates

Growth rates exist

Theorem (Crane-DeSalvo-E. '18)

For every $q>0$ and every pattern σ, the limit

$$
\rho_{\sigma}(q):=\lim _{n \rightarrow \infty} P_{n}(\sigma, q)^{1 / n} \quad \text { exists. }
$$

To plot $\rho_{\sigma}(q)$ as a function of q for $q \in(0, \infty)$, we use the change of variables $x=\frac{q-1}{q+1}$, so that $x \in(-1,1)$.
Then the symmetry $\rho_{\sigma}(q)=\rho_{\sigma^{r}}(1 / q)$ corresponds to the reflection $x \leftrightarrow-x$.

Growth rates exist

Theorem (Crane-DeSalvo-E. '18)

For every $q>0$ and every pattern σ, the limit

$$
\rho_{\sigma}(q):=\lim _{n \rightarrow \infty} P_{n}(\sigma, q)^{1 / n} \quad \text { exists. }
$$

To plot $\rho_{\sigma}(q)$ as a function of q for $q \in(0, \infty)$, we use the change of variables $x=\frac{q-1}{q+1}$, so that $x \in(-1,1)$.
Then the symmetry $\rho_{\sigma}(q)=\rho_{\sigma^{r}}(1 / q)$ corresponds to the reflection $x \leftrightarrow-x$.
$\rho_{\sigma}(q)^{-1}$ is the radius of convergence of $F_{\sigma}(q, z)$ as a function of a complex variable z.

Growth rates

Monotone patterns

Theorem (E. '16)

$$
F_{12 \ldots m}(q, z)=\left(\sum_{j \geq 0} \frac{z^{j m}}{[j m]_{q}!}-\sum_{j \geq 0} \frac{z^{j m+1}}{[j m+1]_{q}!}\right)^{-1}
$$

Growth rates

Monotone patterns

Theorem (E. '16)

$$
F_{12 \ldots m}(q, z)=\left(\sum_{j \geq 0} \frac{z^{j m}}{[j m]_{q}!}-\sum_{j \geq 0} \frac{z^{j m+1}}{[j m+1]_{q}!}\right)^{-1}
$$

We can use this to approximate $\rho_{12 \ldots m}(q)$, which is the reciprocal of the smallest positive zero of the denominator.

Growth rates

Monotone patterns

Consecutive patterns
0000000

Growth rates

Monotone patterns

Growth rates

Monotone patterns

Conjecture (Crane-DeSalvo-E. '18)

$$
\begin{array}{rlrl}
\text { If } q<q^{\prime}, & \text { then } & P_{n}(12 \ldots m, q) & <P_{n}\left(12 \ldots m, q^{\prime}\right) \\
\text { and } & \rho_{12 \ldots m}(q) & <\rho_{12 \ldots m}\left(q^{\prime}\right) .
\end{array}
$$

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

Theorem (Rawlings '07, E. 16)

Let $\sigma=\sigma_{1} \ldots \sigma_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then
$F_{\sigma}(q, z)=\left(1-z-\sum_{k \geq 1} \prod_{j=1}^{k-1}\binom{j(m-1)+m-b}{m-b}_{q} \frac{q^{k i n v(\sigma)}(-1)^{k} z^{k(m-1)+1}}{[k(m-1)+1]_{q}!}\right)^{-1}$

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

Theorem (Rawlings '07, E. 16)

Let $\sigma=\sigma_{1} \ldots \sigma_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then
$F_{\sigma}(q, z)=\left(1-z-\sum_{k \geq 1} \prod_{j=1}^{k-1}\binom{j(m-1)+m-b}{m-b}_{q} \frac{q^{k i n v(\sigma)}(-1)^{k} z^{k(m-1)+1}}{[k(m-1)+1]_{q}!}\right)^{-1}$

Again, after some painful calculations, we can approximate the smallest positive zero of the denominator to get $\rho_{\sigma}(q)^{-1}$.

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

The minimum of $\rho(132, q)$ is attained at $q_{0} \approx 0.6447045$, giving a growth rate of $\rho\left(132, q_{0}\right) \approx 0.7665452$.

Consecutive patterns

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

Growth rates

Non-overlapping patterns with $\sigma_{1}=1$

For $q=1$, we have $\rho_{1243}(1)<\rho_{1342}(1)=\rho_{1432}(1)$.

Comparisons among patterns

Theorem (Crane-DeSalvo-E. '18)

For $q \geq 1$ and every n,

$$
P_{n}(132, q) \leq P_{n}(123, q)
$$

Comparisons among patterns

Comparisons among patterns

Theorem (Crane-DeSalvo-E. '18)

For $q \geq 1$ and every n,

$$
P_{n}(132, q) \leq P_{n}(123, q)
$$

Conjecture (Crane-DeSalvo-E. '18)
For $q \geq 1$ and every n,

$$
P_{n}(231, q) \leq P_{n}(132, q)
$$

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

An upper bound is obtained using Suen's inequality.

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.
An upper bound is obtained using Suen's inequality.
Recall: $c_{\sigma}(i, 2, n)=\#\left\{2\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.

$$
T_{\sigma}(q):=\sum_{i, n} c_{\sigma}(i, 2, n) \frac{q^{i}}{[n]_{q}!}
$$

Bounds on $\rho_{\sigma}(q)$

Even for patterns for which $F_{\sigma}(q, z)$ is unknown, we have general upper and lower bounds on the growth rate $\rho_{\sigma}(q)$.

An upper bound is obtained using Suen's inequality.
Recall: $c_{\sigma}(i, 2, n)=\#\left\{2\right.$-clusters $\pi \in \mathcal{S}_{n}$ w.r.t. σ with $\left.\operatorname{inv}(\pi)=i\right\}$.

$$
T_{\sigma}(q):=\sum_{i, n} c_{\sigma}(i, 2, n) \frac{q^{i}}{[n]_{q}!}
$$

Proposition (Crane-DeSalvo-E. '18)

Fix $m \geq 3, \sigma \in S_{m}$ and $q>0$. Then

$$
\rho_{\sigma}(q) \leq \exp \left(-\frac{q^{\operatorname{inv}(\sigma)}}{[m]_{q}!}+\exp \left(4(m-1) \frac{q^{\operatorname{inv}(\sigma)}}{[m]_{q}!}\right) T_{\sigma}(q)\right) .
$$

Bounds on $\rho_{\sigma}(q)$

An lower bound on $\rho_{\sigma}(q)$ is obtained using a version of the Lovász local lemma.

Bounds on $\rho_{\sigma}(q)$

An lower bound on $\rho_{\sigma}(q)$ is obtained using a version of the Lovász local lemma.

Proposition (Crane-DeSalvo-E. '18)

Fix $m \geq 3, \sigma \in S_{m}, q>0$. Then
$\rho_{\sigma}(q) \geq 1-\frac{q^{\operatorname{inv}(\sigma)}}{[m]_{q}!} \exp \left(\frac{1}{2}\left(1-\frac{q^{\operatorname{inv}(\sigma)}}{[m]_{q}!}-\sqrt{1-(4 m-2) \frac{q^{\operatorname{inv}(\sigma)}}{[m]_{q}!}+\frac{q^{2 \operatorname{inv}(\sigma)}}{[m]_{q}!^{2}}}\right)\right)$.

Bounds on $\rho_{\sigma}(q)$

Bounds on $\rho_{\sigma}(q)$

Example: $\sigma=1432$.
The blue curve is the actual $\rho_{1432}(q)$ computed earlier.

Bounds on $\rho_{\sigma}(q)$

Example: $\sigma=2413$.
Neither $F_{2413}(q, z)$ nor the growth rate $\rho_{2413}(q)$ are known.

Thank you

