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Definitions

Consecutive patterns

π = π1π2 . . . πn ∈ Sn, σ = σ1σ2 . . . σm ∈ Sm.

Definition
π contains σ as a consecutive pattern if π has a subsequence of
adjacent entries πiπi+1 . . . πi+m−1 in the same relative order as
σ1 . . . σm; otherwise π avoids σ.

In this talk, patterns will mean consecutive patterns.

Example
42531 contains 132, but 25134 avoids 132.
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Definitions

Consecutive patterns in disguise

Occurrences of 21 are descents.
The number of permutations in Sn with a given number of
descents is an Eulerian number, dating back to 1755.

Occurrences of 132 or 231 are peaks: πi < πi+1 > πi+2.
Peaks play a role in algebraic combinatorics.

Permutations avoiding 123 and 321 are called alternating
permutations, studied by André in the 19th century:
π1 < π2 > π3 < π4 > · · · or π1 > π2 < π3 > π4 < · · ·
They are counted by the tangent and secant numbers.

Occurrences of 12 . . .m are called increasing runs.

Disregarding these implicit appearances, the systematic study of
consecutive patterns in permutations started about 20 years ago.
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Generating functions

Generating functions

For a fixed pattern σ, let

Sn(σ) = {π ∈ Sn : π avoids σ}

,

Fσ(z) =
∑
n≥0

|Sn(σ)|
zn

n!
.

Formulas for Fσ(z) are known for some patterns.

Example

F132(z) =

(
1−

∫ z

0
e−t

2/2 dt

)−1

.

F1234(z) =
2

cos z − sin z + e−z
.

It is convenient to define ωσ(z) = Fσ(z)
−1.
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Generating functions

Exact enumeration

Theorem (E.–Noy ’01)

For σ = 12 . . .m, ω = ωσ(z) satisfies

ω(m−1) + ω(m−2) + · · ·+ ω′ + ω = 0.

σ ∈ Sm is non-overlapping if two occurrences of σ can’t overlap in
more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.–Noy ’01)

Let σ ∈ Sm be non-overlapping with σ1 = 1, σm = b. Then
ω = ωσ(z) satisfies

ω(b) +
zm−b

(m − b)!
ω′ = 0.
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Generating functions

Exact enumeration

Similar differential equations are known for ωσ(z) for other
patterns σ.

Question: Is ωσ(z) always D-finite (that is, satisfies a linear
differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann ’18, conjectured by E.–Noy
’11)

ω1423(z) is not D-finite.

The analogous question in the case of “classical” (i.e.
non-consecutive) patterns is still open.

Garrabrant–Pak ’15 prove that some generating functions for
permutations avoiding sets of classical patterns are not D-finite.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Generating functions

Exact enumeration

Similar differential equations are known for ωσ(z) for other
patterns σ.

Question: Is ωσ(z) always D-finite (that is, satisfies a linear
differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann ’18, conjectured by E.–Noy
’11)

ω1423(z) is not D-finite.

The analogous question in the case of “classical” (i.e.
non-consecutive) patterns is still open.

Garrabrant–Pak ’15 prove that some generating functions for
permutations avoiding sets of classical patterns are not D-finite.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Generating functions

Exact enumeration

Similar differential equations are known for ωσ(z) for other
patterns σ.

Question: Is ωσ(z) always D-finite (that is, satisfies a linear
differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann ’18, conjectured by E.–Noy
’11)

ω1423(z) is not D-finite.

The analogous question in the case of “classical” (i.e.
non-consecutive) patterns is still open.

Garrabrant–Pak ’15 prove that some generating functions for
permutations avoiding sets of classical patterns are not D-finite.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Generating functions

Exact enumeration

Similar differential equations are known for ωσ(z) for other
patterns σ.

Question: Is ωσ(z) always D-finite (that is, satisfies a linear
differential equation with polynomial coefficients)?

Theorem (Beaton–Conway–Guttmann ’18, conjectured by E.–Noy
’11)

ω1423(z) is not D-finite.

The analogous question in the case of “classical” (i.e.
non-consecutive) patterns is still open.

Garrabrant–Pak ’15 prove that some generating functions for
permutations avoiding sets of classical patterns are not D-finite.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

Asymptotic behavior

Theorem (E. ’05)

For every σ, the limit

ρσ := lim
n→∞

(
|Sn(σ)|

n!

)1/n

exists.

This limit is known only for some patterns.

Theorem (Ehrenborg–Kitaev–Perry ’11)

For every σ,
|Sn(σ)|

n!
= γσρ

n
σ + O(δn),

for some constants γσ and δ < ρσ.

The proof uses methods from spectral theory.
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Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Asymptotic behavior

The most and the least avoided patterns

For which pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. ’12 - analytic proof, Perarnau ’13 - probabilistic proof)

For every σ ∈ Sm and n large enough,

|Sn(σ)| ≤ |Sn(12 . . .m)|.

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. ’12, conjectured by Nakamura ’11)

For every σ ∈ Sm and n large enough,

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|.

The proofs use singularity analysis of the generating functions.

No known analogues for classical (i.e. non-consecutive) patterns.
Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

The Mallows distribution

Inversions

Definition
An inversion of π ∈ Sn is a pair (i , j) with i < j and πi > πj .
Let inv(π) = number of inversions of π.

Example: inv(3142) = 3, since 3 > 1, 3 > 2 and 4 > 2.

Definition (Mallows ’57)

Fix a real parameter q > 0. The Mallows distribution on Sn assigns
probability

qinv(π)

[n]q!

to each π ∈ Sn, where
[n]q! = (1+ q)(1+ q + q2) · · · (1+ q + · · ·+ qn−1).

It is a canonical statistical model for ranking data.
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The Mallows distribution

Generating functions again

The probability that a random permutation from the Mallows
distribution avoids σ is

Pn(σ, q) :=
∑

π∈Sn(σ)

qinv(π)

[n]q!
.

Define

Fσ(q, z) :=
∑
n≥0

Pn(σ, q)z
n =

∑
n≥0

∑
π∈Sn(σ)

qinv(π)
zn

[n]q!
.

Denoting by σr and σc the reversal and the complement of σ, we
have

Fσ(q, z) = Fσr (1/q, z) = Fσc (1/q, z) = Fσrc (q, z).
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The generalized cluster method

Clusters

The cluster method of Goulden and Jackson reduces the
computation of Fσ(z) to the enumeration of so-called clusters.

A k-cluster with respect to σ ∈ Sm is a permutation filled with k
marked occurrences of σ that overlap with each other.

Example

142536879 is a 3-cluster w.r.t. 1324.

We refine the cluster method to keep track of inversions, so it
applies to the Mallows distribution.
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The generalized cluster method

The generalized cluster method

Let cσ(i , k, n) = #{k-clusters π ∈ Sn w.r.t. σ with inv(π) = i}.

Define the cluster generating function

Cσ(q, t, z) =
∑
i ,k,n

cσ(i , k , n) q
i tk

zn

[n]q!
.

The generalized cluster method expresses Fσ(q, z) in terms of the
cluster generating function, which is often simpler:

Theorem (Goulden–Jackson ’79, Rawlings ’11, E. ’16)

Fσ(q, z) =
1

1− z − Cσ(q,−1, z)
.

The proof combines inclusion-exclusion with some properties of inv.
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Fσ(q, z) =
1

1− z − Cσ(q,−1, z)
.

The proof combines inclusion-exclusion with some properties of inv.
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Growth rates

Growth rates exist

Theorem (Crane–DeSalvo–E. ’18)

For every q > 0 and every pattern σ, the limit

ρσ(q) := lim
n→∞

Pn(σ, q)
1/n exists.

To plot ρσ(q) as a function of q for q ∈ (0,∞), we use the change
of variables x = q−1

q+1 , so that x ∈ (−1, 1).

Then the symmetry ρσ(q) = ρσr (1/q) corresponds to the reflection
x ↔ −x .

ρσ(q)
−1 is the radius of convergence of Fσ(q, z) as a function of a

complex variable z .
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Growth rates

Monotone patterns

Theorem (E. ’16)

F12...m(q, z) =

∑
j≥0

z jm

[jm]q!
−
∑
j≥0

z jm+1

[jm + 1]q!

−1

We can use this to approximate ρ12...m(q), which is the reciprocal
of the smallest positive zero of the denominator.
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Growth rates

Monotone patterns

ρ123(q)

0 ≤ q ≤ 1

ρ123(q)

ρ1234(q)

ρ12345(q)
1 ≤ q <∞

Conjecture (Crane–DeSalvo–E. ’18)

If q < q′, then Pn(12 . . .m, q) < Pn(12 . . .m, q′)
and ρ12...m(q) < ρ12...m(q

′).
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Growth rates

Non-overlapping patterns with σ1 = 1

Theorem (Rawlings ’07, E. 16)

Let σ = σ1 . . . σm be non-overlapping with σ1 = 1, σm = b. Then

Fσ(q, z) =

1 − z −
∑
k≥1

k−1∏
j=1

(
j(m − 1) +m − b

m − b

)
q

qk inv(σ)(−1)kzk(m−1)+1

[k(m − 1) + 1]q!

−1

.

Again, after some painful calculations, we can approximate the
smallest positive zero of the denominator to get ρσ(q)−1.
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Growth rates

Non-overlapping patterns with σ1 = 1

ρ132(q)

The minimum of ρ(132, q) is attained at q0 ≈ 0.6447045, giving a
growth rate of ρ(132, q0) ≈ 0.7665452.
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Growth rates

Non-overlapping patterns with σ1 = 1

ρ1243(q)

ρ1342(q)

ρ1432(q)

For q = 1, we have ρ1243(1) < ρ1342(1) = ρ1432(1).
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Comparisons among patterns

Comparisons among patterns

Theorem (Crane–DeSalvo–E. ’18)

For q ≥ 1 and every n,

Pn(132, q) ≤ Pn(123, q).

Conjecture (Crane–DeSalvo–E. ’18)

For q ≥ 1 and every n,

Pn(231, q) ≤ Pn(132, q).
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Bounds on ρσ(q)

Even for patterns for which Fσ(q, z) is unknown, we have general
upper and lower bounds on the growth rate ρσ(q).

An upper bound is obtained using Suen’s inequality.

Recall: cσ(i , 2, n) = #{2-clusters π ∈ Sn w.r.t. σ with inv(π) = i}.

Tσ(q) :=
∑
i ,n

cσ(i , 2, n)
qi

[n]q!
.

Proposition (Crane–DeSalvo–E. ’18)

Fix m ≥ 3, σ ∈ Sm and q > 0. Then

ρσ(q) ≤ exp

(
−qinv(σ)

[m]q!
+ exp

(
4(m − 1)

qinv(σ)

[m]q!

)
Tσ(q)

)
.
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Bounds on ρσ(q)

Bounds on ρσ(q)

An lower bound on ρσ(q) is obtained using a version of the Lovász
local lemma.

Proposition (Crane–DeSalvo–E. ’18)

Fix m ≥ 3, σ ∈ Sm, q > 0. Then

ρσ(q) ≥ 1−qinv(σ)

[m]q!
exp

(
1
2

(
1 − qinv(σ)

[m]q!
−

√
1 − (4m − 2)

qinv(σ)

[m]q!
+

q2 inv(σ)

[m]q!2

))
.
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Bounds on ρσ(q)

Bounds on ρσ(q)

Example: σ = 1432.

The blue curve is the actual ρ1432(q) computed earlier.
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Bounds on ρσ(q)

Bounds on ρσ(q)

Example: σ = 2413.

Neither F2413(q, z) nor the growth rate ρ2413(q) are known.

-1.0 -0.5 0.0 0.5 1.0
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

x =
q - 1

q + 1

σ
=
24
13

Sergi Elizalde Consecutive patterns in the Mallows distribution



Consecutive patterns The Mallows distribution Growth rates

Bounds on ρσ(q)

Thank you
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