Counting lattice paths by the number of crossings and major index

Sergi Elizalde
Dartmouth College

Lattice Paths, Combinatorics and Interactions - June 2021

I. Paths crossing a line

Lattice paths and major index

Let $\mathcal{G}_{a, b}$ be the set of lattice paths in \mathbb{Z}^{2} with a steps $U=(1,1)$ and b steps $D=(1,-1)$, starting at the origin.

Lattice paths and major index

Let $\mathcal{G}_{a, b}$ be the set of lattice paths in \mathbb{Z}^{2} with a steps $U=(1,1)$ and b steps $D=(1,-1)$, starting at the origin.

Encoding paths $P \in \mathcal{G}_{a, b}$ as binary words via $U \mapsto 0, D \mapsto 1$, we have these definitions:

- a descent of P is a valley, i.e., a corner $D U$,
- the major index, maj (P), is the sum of the x-coordinates of the valleys

Lattice paths and major index

Lemma (MacMahon)

$$
\sum_{P \in \mathcal{G}_{a, b}} q^{\operatorname{maj}(P)}=\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}
$$

where

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

is a q-binomial coefficient.

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

In particular, $\mathcal{G}_{a, b}^{\geq 0, \ell}=\mathcal{G}_{a, b}$.

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

In particular, $\mathcal{G}_{a, b}^{\geq 0, \ell}=\mathcal{G}_{a, b}$.
We are interested in the polynomials

$$
G_{a, b}^{\geq r, \ell}(q)=\sum_{P \in \mathcal{G}_{a, b}^{\geq r, \ell}} q^{\operatorname{maj}(P)} .
$$

Counting paths crossing the x-axis

Consider first the case where $\ell=0$.

Theorem

For any $a, b, r \geq 0$,

$$
G_{a, b}^{\geq r, 0}(q)= \begin{cases}q^{\binom{r+1}{2}}\left[\begin{array}{c}
a+b \\
a+r
\end{array}\right]_{q} & \text { if } a>b, \\
\left(1+q^{a}\right) q^{\binom{r+1}{2}}\left[\begin{array}{c}
2 a-1 \\
a+r
\end{array}\right]_{q} & \text { if } a=b, \\
q^{\binom{r}{2}}\left[\begin{array}{c}
a+b \\
a-r
\end{array}\right]_{q} & \text { if } a<b .\end{cases}
$$

Counting paths crossing the x-axis

Consider first the case where $\ell=0$.

Theorem

For any $a, b, r \geq 0$,

$$
G_{a, b}^{\geq r, 0}(q)= \begin{cases}q^{\binom{r+1}{2}}\left[\begin{array}{c}
a+b \\
a+r
\end{array}\right]_{q} & \text { if } a>b, \\
\left(1+q^{a}\right) q^{\binom{r+1}{2}}\left[\begin{array}{c}
2 a-1 \\
a+r
\end{array}\right]_{q} & \text { if } a=b, \\
q^{\binom{r}{2}}\left[\begin{array}{c}
a+b \\
a-r
\end{array}\right]_{q} & \text { if } a<b .\end{cases}
$$

Our proof is bijective.

Connections to the literature

- The specialization $q=1$ (which ignores maj) is due to Engelberg ' 65 and Sen '65, and has later been rediscovered by other authors.

Connections to the literature

- The specialization $q=1$ (which ignores maj) is due to Engelberg ' 65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $q=1$ use repeated applications of the reflection principle, which does not behave well with respect to maj.

Connections to the literature

- The specialization $q=1$ (which ignores maj) is due to Engelberg ' 65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $q=1$ use repeated applications of the reflection principle, which does not behave well with respect to maj.

- The case $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Connections to the literature

- The specialization $q=1$ (which ignores maj) is due to Engelberg ' 65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $q=1$ use repeated applications of the reflection principle, which does not behave well with respect to maj.

- The case $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Their proof is by induction and does not give a bijection.

Connections to the literature

- The specialization $q=1$ (which ignores maj) is due to Engelberg ' 65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $q=1$ use repeated applications of the reflection principle, which does not behave well with respect to maj.

- The case $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Their proof is by induction and does not give a bijection.

- The theorem has applications to the enumeration of partitions λ with certain restrictions on the ranks $\lambda_{i}-\lambda_{i}^{\prime}$, studied by Corteel-E.-Savage '21+.

Counting paths crossing a horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

Counting paths crossing a horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

$$
\text { If } 0>\ell>a-b, \text { then }
$$

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} .
$$

Counting paths crossing a horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

If $0>\ell>a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} .
$$

If $0>\ell<a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a+2 m-1-\ell
\end{array}\right]_{q} .
$$

If $0<\ell>a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{(m-1)(2 m-1+\ell)}\left[\begin{array}{c}
a+b \\
a-2 m+1-\ell]_{q} .
\end{array}\right.
$$

Counting paths crossing a horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

If $0>\ell>a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} .
$$

If $0>\ell<a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a+2 m-1-\ell
\end{array}\right]_{q} .
$$

If $0<\ell>a-b$ and $m \geq 1$, then

$$
\begin{aligned}
& G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{(m-1)(2 m-1+\ell)}\left[\begin{array}{c}
a+b \\
a-2 m+1-\ell
\end{array}\right]_{q} .
\end{aligned}
$$

$G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}a+b \\ a+2 m\end{array}\right]_{q}, \quad G_{a, b}^{\geq 2 m+1, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}a+b \\ a+2 m+1\end{array}\right]_{q}$.
If $0>\ell=a-b$, then
$G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}a+b \\ a-2 m\end{array}\right]_{q}, \quad G_{a, b}^{\geq 2 m+1, \ell}(q)=q^{(m+1)(2 m+1-\ell)}\left[\begin{array}{c}a+b \\ a-2 m-1\end{array}\right]_{q}$.

II. Pairs of paths crossing each other

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.

$$
A=(x, y) \Gamma^{B=(u, v)}
$$

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.
Descents of $P \in \mathcal{P}_{A \rightarrow B}$ are corners $E N$, and $\operatorname{maj}(P)$ is the sum of the positions of the valleys, where the position is determined by numbering the vertices of P starting from 0 .

$$
A=(x, y) \longleftrightarrow\left\{\begin{array}{l}
\square \\
\operatorname{maj}(P)=2+7=9
\end{array}\right.
$$

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.
Descents of $P \in \mathcal{P}_{A \rightarrow B}$ are corners $E N$, and $\operatorname{maj}(P)$ is the sum of the positions of the valleys, where the position is determined by numbering the vertices of P starting from 0 .

$$
A=(x, y) \longmapsto \int_{2} \stackrel{\rightharpoonup}{7}^{B=(u, v)} \operatorname{maj}(P)=2+7=9
$$

If $A=(x, y)$ and $B=(u, v)$, MacMahon's formula gives

$$
\sum_{P \in \mathcal{P}_{A \rightarrow B}} q^{\operatorname{maj}(P)}=\left[\begin{array}{c}
u-x+v-y \\
u-x
\end{array}\right]_{q}
$$

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step (N or E) as it had when arriving at C.

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step (N or E) as it had when arriving at C.

crossings

not a crossing

$$
\begin{aligned}
\mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq r}=\{(P, Q): & P \in \mathcal{P}_{A_{1} \rightarrow B_{0}}, Q \in \mathcal{P}_{A_{2} \rightarrow B_{\bullet}}, \\
& P \text { and } Q \text { have } \geq r \text { crossings }\} .
\end{aligned}
$$

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:

We will count pairs of paths with respect to the sum of their major indices and to the number of times they cross each other.

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:

We will count pairs of paths with respect to the sum of their major indices and to the number of times they cross each other.
$A_{2} \quad$ For $r \geq 0$, define the polynomials

$$
H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}(q)=\sum_{(P, Q) \in \mathcal{P}_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}} q^{\operatorname{maj}(P)+\operatorname{maj}(Q)} .
$$

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{\circ}=\left(u_{\circ}, v_{\circ}\right), B_{\bullet}=\left(u_{\bullet}, v_{\bullet}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{\circ}-x_{1}+v_{0}-y_{1} \\
u_{\circ}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q} .
$$

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{\circ}=\left(u_{\circ}, v_{\circ}\right), B_{\bullet}=\left(u_{\bullet}, v_{\bullet}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{0}-x_{1}+v_{0}-y_{1} \\
u_{0}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q} .
$$

To give a general formula, first define
$f_{r}\left(A_{1}, A_{2}, B_{0}, B_{\bullet} ; q\right):=q^{r\left(r+x_{2}-x_{1}\right)}\left[\begin{array}{c}u_{0}-x_{1}+v_{0}-y_{1} \\ u_{0}-x_{1}+r\end{array}\right]_{q}\left[\begin{array}{c}u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\ u_{\bullet}-x_{2}-r\end{array}\right]_{q}$.

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{\circ}=\left(u_{0}, v_{0}\right), B_{\bullet}=\left(u_{\bullet}, v_{\bullet}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{0}-x_{1}+v_{0}-y_{1} \\
u_{0}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q} .
$$

To give a general formula, first define
$f_{r}\left(A_{1}, A_{2}, B_{0}, B_{\bullet} ; q\right):=q^{r\left(r+x_{2}-x_{1}\right)}\left[\begin{array}{c}u_{0}-x_{1}+v_{0}-y_{1} \\ u_{0}-x_{1}+r\end{array}\right]_{q}\left[\begin{array}{c}u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\ u_{\bullet}-x_{2}-r\end{array}\right]_{q}$.

Write $A_{1} \prec A_{2}$ to mean that A_{1} is strictly northwest of A_{2}.

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$.

- B_{1}
- B_{2}

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 22+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right),
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 22 m}(q)=f_{2 m}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right),
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 22 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m-1}(q)=f_{2 m-1}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right) .
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right),
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 22 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=f_{2 m-1}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right) .
$$

Now let $A=(x, y)$ and $B=(u, v)$.

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{22 m}(q)=f_{2 m}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right),
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 22 m}(q)=f_{2 m-1}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right) .
$$

Now let $A=(x, y)$ and $B=(u, v)$. Then, for all $r \geq 0$,

$$
\begin{aligned}
& H_{A \rightarrow B_{1}, A \rightarrow B_{2}}^{\geq r}(q)=f_{r}\left(A, A, B_{1}, B_{2} ; q\right), \\
& H_{A_{1} \rightarrow B, A_{2} \rightarrow B}^{\geq r}(q)=f_{r}\left(A_{1}, A_{2}, B, B ; q\right),
\end{aligned}
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right),
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 22 m}(q)=f_{2 m-1}\left(A_{1}, A_{2}, B_{2}, B_{1} ; q\right) .
$$

Now let $A=(x, y)$ and $B=(u, v)$. Then, for all $r \geq 0$,

$$
\begin{aligned}
& H_{A \rightarrow B_{1}, A \rightarrow B_{2}}^{\geq r}(q)=f_{r}\left(A, A, B_{1}, B_{2} ; q\right), \\
& H_{A_{1} \rightarrow B, A_{2} \rightarrow B}^{\geq r}(q)=f_{r}\left(A_{1}, A_{2}, B, B ; q\right), \\
& H_{A \rightarrow B, A \rightarrow B}^{\geq r}(q)= \begin{cases}f_{0}(A, A, B, B ; q) & \text { if } r=0, \\
2 \sum_{j \geq 1}(-1)^{j-1} f_{r+j}(A, A, B, B ; q) & \text { if } r \geq 1 .\end{cases}
\end{aligned}
$$

Counting pairs of paths by crossings

With the specialization $q=1$ (which ignores maj), the theorem still holds when removing the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

Counting pairs of paths by crossings

With the specialization $q=1$ (which ignores maj), the theorem still holds when removing the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

In this case,

$$
f_{r}\left(A_{1}, A_{2}, B_{\circ}, B_{\bullet} ; 1\right)=\binom{u_{\circ}-x_{1}+v_{\circ}-y_{1}}{u_{\circ}-x_{1}+r}\binom{u_{\bullet}-x_{2}+v_{\bullet}-y_{2}}{u_{\bullet}-x_{2}-r} .
$$

Counting pairs of paths by crossings

With the specialization $q=1$ (which ignores maj), the theorem still holds when removing the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

In this case,

$$
f_{r}\left(A_{1}, A_{2}, B_{\circ}, B_{\bullet} ; 1\right)=\binom{u_{\circ}-x_{1}+v_{\circ}-y_{1}}{u_{\circ}-x_{1}+r}\binom{u_{\bullet}-x_{2}+v_{\bullet}-y_{2}}{u_{\bullet}-x_{2}-r} .
$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.

Counting pairs of paths by crossings

With the specialization $q=1$ (which ignores maj), the theorem still holds when removing the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

In this case,

$$
f_{r}\left(A_{1}, A_{2}, B_{\circ}, B_{\bullet} ; 1\right)=\binom{u_{\circ}-x_{1}+v_{\circ}-y_{1}}{u_{\circ}-x_{1}+r}\binom{u_{\bullet}-x_{2}+v_{\bullet}-y_{2}}{u_{\bullet}-x_{2}-r} .
$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.
However, this method does not prove the refinement by maj.

Counting pairs of paths by crossings

With the specialization $q=1$ (which ignores maj), the theorem still holds when removing the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

In this case,

$$
f_{r}\left(A_{1}, A_{2}, B_{0}, B_{\bullet} ; 1\right)=\binom{u_{0}-x_{1}+v_{0}-y_{1}}{u_{\circ}-x_{1}+r}\binom{u_{\bullet}-x_{2}+v_{\bullet}-y_{2}}{u_{\bullet}-x_{2}-r} .
$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.
However, this method does not prove the refinement by maj.
Our proof of the refined case is related to Krattenthaler's '95 refinement of the Gessel-Viennot determinant by maj. However, our bijections have simple descriptions in terms of paths.
III. Some bijections used in the proofs

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.
Define a bijection

$$
\bar{\tau}: \mathcal{P}_{A \rightarrow B}^{E} \rightarrow \mathcal{P}_{A+v \rightarrow B}^{N}
$$

by placing the $N E$ corners of $\bar{\tau}(P)$ at the coordinates of the $E N$ corners of P :

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.
Define a bijection

$$
\bar{\tau}: \mathcal{P}_{A \rightarrow B}^{E} \rightarrow \mathcal{P}_{A+v \rightarrow B}^{N}
$$

by placing the $N E$ corners of $\bar{\tau}(P)$ at the coordinates of the $E N$ corners of P :

If $A=(x, y)$ and $B=(u, v)$, one can show that

$$
\operatorname{maj}(\bar{\tau}(P))=\operatorname{maj}(P)+u-x-1
$$

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Similarly, define a bijection

$$
\bar{\sigma}: \mathcal{P}_{A \rightarrow B}^{N} \rightarrow \mathcal{P}_{A-v \rightarrow B}^{E}
$$

by placing the $E N$ corners of $\bar{\sigma}(P)$ at the coordinates of the $N E$ corners of P :

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Similarly, define a bijection

$$
\bar{\sigma}: \mathcal{P}_{A \rightarrow B}^{N} \rightarrow \mathcal{P}_{A-v \rightarrow B}^{E}
$$

by placing the $E N$ corners of $\bar{\sigma}(P)$ at the coordinates of the $N E$ corners of P :

If $A=(x, y)$ and $B=(u, v)$, one can show that

$$
\operatorname{maj}(\bar{\sigma}(P))=\operatorname{maj}(P)-u+x
$$

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E.

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P=P_{L} P_{R}$ and $Q=Q_{L} Q_{R}$.

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P=P_{L} P_{R}$ and $Q=Q_{L} Q_{R}$. Let $P^{\prime}=\bar{\sigma}\left(P_{L}\right) Q_{R} \in \mathcal{P}_{A_{\mathbf{1}}-\mathbf{v} \rightarrow B_{\mathbf{0}}} \quad$ and $\quad Q^{\prime}=\bar{\tau}\left(Q_{L}\right) P_{R} \in \mathcal{P}_{A_{2}+\mathbf{v} \rightarrow B_{0}}$.

$$
A_{2}+\mathbf{v}
$$

A bijection for pairs of paths

With the right setup, the map $(P, Q) \mapsto\left(P^{\prime}, Q^{\prime}\right)$ is a bijection, which we denote by θ_{r}.

A bijection for pairs of paths

With the right setup, the map $(P, Q) \mapsto\left(P^{\prime}, Q^{\prime}\right)$ is a bijection, which we denote by θ_{r}.
If $A_{1}=\left(x_{1}, y_{1}\right)$ and $A_{2}=\left(x_{2}, y_{2}\right)$, one can show that

$$
\operatorname{maj}\left(P^{\prime}\right)+\operatorname{maj}\left(Q^{\prime}\right)=\operatorname{maj}(P)+\operatorname{maj}(Q)-\left(x_{2}-x_{1}+1\right)
$$

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

In this example, we have a bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{\bar{A}_{1}-2 \mathbf{v} \rightarrow B_{2}, A_{2}+2 \mathbf{v} \rightarrow B_{1}}^{\geq 0} .
$$

Composing bijections

The bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{A_{1}-2 \mathbf{v} \rightarrow B_{2}, A_{2}+2 \mathbf{v} \rightarrow B_{1}}^{\geq 0}
$$

decreases maj by $2\left(2+x_{2}-x_{1}\right)$.
The pairs of paths in the image are easy to enumerate.

Composing bijections

The bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{A_{1}-2 \mathbf{v} \rightarrow B_{2}, A_{2}+2 \mathbf{v} \rightarrow B_{1}}^{\geq 0}
$$

decreases maj by $2\left(2+x_{2}-x_{1}\right)$.
The pairs of paths in the image are easy to enumerate. In this case, we obtain
$H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2}(q)=q^{2\left(2+x_{2}-x_{1}\right)}\left[\begin{array}{c}u_{2}-x_{1}+v_{2}-y_{1} \\ u_{2}-x_{1}+2\end{array}\right]_{q}\left[\begin{array}{c}u_{1}-x_{2}+v_{1}-y_{2} \\ u_{1}-x_{2}-2\end{array}\right]_{q}$,
where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$.

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ. They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ. They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.
τ reflects the valleys along the x-axis: σ reflects the peaks:

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ. They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.
τ reflects the valleys along the x-axis: σ reflects the peaks:

$\operatorname{maj}(\tau(P))=\operatorname{maj}(P), \quad \operatorname{maj}(\sigma(P))=\operatorname{maj}(P)+\# U-\# D-1$

Composing bijections

To prove the theorem about paths crossing a line,

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis,

The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

In this case, we get a bijection $\mathcal{G}_{a, b}^{\geq 2, \ell} \rightarrow \mathcal{G}_{a+2, b-2}$ that decreases maj by $\ell+3$. The paths in the image are easy to count.

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., DU or EN corners).

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., DU or EN corners). Here are some sample results:

If $0<\ell<a-b$, then
$\sum_{P \in \mathcal{G}_{a, b}^{\geq 2 m, \ell}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}=\sum_{k} t^{k} q^{k^{2}+m(m+1+\ell)}\left[\begin{array}{c}a \\ k-m\end{array}\right]_{q}\left[\begin{array}{c}b \\ k+m\end{array}\right]_{q}$.

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., DU or EN corners). Here are some sample results:

If $0<\ell<a-b$, then

$$
\sum_{P \in \mathcal{G}_{a, b}^{\geq 2 m, \ell}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}=\sum_{k} t^{k} q^{k^{2}+m(m+1+\ell)}\left[\begin{array}{c}
a \\
k-m
\end{array}\right]_{q}\left[\begin{array}{c}
b \\
k+m
\end{array}\right]_{q} .
$$

If $A_{1} \prec A_{2}, B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$, then, for all $m \geq 0$,

$$
\left.\begin{array}{rl}
\sum_{(P, Q) \in \mathcal{P}_{A_{1}}^{\geq r} \rightarrow B_{2}, A_{2} \rightarrow B_{1}} & t^{\operatorname{des}(P)+\operatorname{des}(Q)} q^{\operatorname{maj}(P)+\operatorname{maj}(Q)} \\
=q^{2 m\left(2 m+x_{\mathbf{2}}-x_{1}\right)} & \left(\sum_{k} t^{k} q^{k(k+2 m)}\left[\begin{array}{c}
u_{2}-x_{1} \\
k
\end{array}\right]_{q}\left[\begin{array}{c}
v_{2}-y_{1} \\
k+2 m
\end{array}\right]_{q}\right) \\
& \cdot\left(\sum_{k} t^{k} q^{k(k-2 m)}\left[\begin{array}{c}
u_{1}-x_{2} \\
k
\end{array}\right]_{q}\left[\begin{array}{l}
v_{1}-y_{2} \\
k-2 m
\end{array}\right]_{q}\right.
\end{array}\right) .
$$

Further refinements

Our bijections $\bar{\tau}, \bar{\sigma}, \sigma$ do not behave well with respect to the number of descents.

Further refinements

Our bijections $\bar{\tau}, \bar{\sigma}, \sigma$ do not behave well with respect to the number of descents.

Instead, we prove these refinements using different bijections that rely on Krattenthaler's two-rowed arrays.
arXiv:2106.09878

