Counting lattice paths by the number of crossings and major index

Sergi Elizalde

Dartmouth College

Lattice Paths, Combinatorics and Interactions - June 2021

Definitions Results

I. Paths crossing a line

Sergi Elizalde Lattice paths by crossings and major index

Definitions Results

Lattice paths and major index

Let $\mathcal{G}_{a,b}$ be the set of lattice paths in \mathbb{Z}^2 with a steps U = (1, 1)and b steps D = (1, -1), starting at the origin.

Definitions Results

Lattice paths and major index

Let $\mathcal{G}_{a,b}$ be the set of lattice paths in \mathbb{Z}^2 with a steps U = (1, 1)and b steps D = (1, -1), starting at the origin.

Encoding paths $P \in \mathcal{G}_{a,b}$ as binary words via $U \mapsto 0$, $D \mapsto 1$, we have these definitions:

- a descent of *P* is a valley, i.e., a corner *DU*,
- the major index, maj(P), is the sum of the x-coordinates of the valleys

Definitions Results

Lattice paths and major index

Lemma (MacMahon)

$$\sum_{P \in \mathcal{G}_{a,b}} q^{\mathsf{maj}(P)} = \begin{bmatrix} a+b\\ a \end{bmatrix}_q$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \frac{(1-q^n)(1-q^{n-1})\cdots(1-q^{n-k+1})}{(1-q^k)(1-q^{k-1})\cdots(1-q)}$$

is a *q*-binomial coefficient.

Definitions Results

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.

Definitions Results

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.

For $\ell \in \mathbb{Z}$ and $r \ge 0$, let $\mathcal{G}_{a,b}^{\ge r,\ell}$ be the set of paths in $\mathcal{G}_{a,b}$ that cross the line $y = \ell$ at least r times.

Definitions Results

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.

For $\ell \in \mathbb{Z}$ and $r \ge 0$, let $\mathcal{G}_{a,b}^{\ge r,\ell}$ be the set of paths in $\mathcal{G}_{a,b}$ that cross the line $y = \ell$ at least r times.

In particular, $\mathcal{G}_{a,b}^{\geq 0,\ell} = \mathcal{G}_{a,b}$.

Definitions Results

Crossing a line

We will count these paths with respect to the major index and to the number of times that they cross a horizontal line.

For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a,b}^{\geq r,\ell}$ be the set of paths in $\mathcal{G}_{a,b}$ that cross the line $y = \ell$ at least r times.

In particular, $\mathcal{G}_{a,b}^{\geq 0,\ell} = \mathcal{G}_{a,b}$.

We are interested in the polynomials

$$G_{a,b}^{\geq r,\ell}(q) = \sum_{P \in \mathcal{G}_{a,b}^{\geq r,\ell}} q^{\operatorname{maj}(P)}.$$

Definitions Results

Counting paths crossing the *x*-axis

Consider first the case where $\ell = 0$.

Theorem

For any $a, b, r \ge 0$,

$$G_{a,b}^{\geq r,0}(q) = \begin{cases} q^{\binom{r+1}{2}} \begin{bmatrix} a+b\\a+r \end{bmatrix}_{q} & \text{if } a > b, \\ (1+q^{a})q^{\binom{r+1}{2}} \begin{bmatrix} 2a-1\\a+r \end{bmatrix}_{q} & \text{if } a = b, \\ q^{\binom{r}{2}} \begin{bmatrix} a+b\\a-r \end{bmatrix}_{q} & \text{if } a < b. \end{cases}$$

Definitions Results

Counting paths crossing the *x*-axis

Consider first the case where $\ell = 0$.

Theorem

For any $a, b, r \ge 0$,

$$G_{a,b}^{\geq r,0}(q) = \begin{cases} q^{\binom{r+1}{2}} \begin{bmatrix} a+b\\a+r \end{bmatrix}_{q} & \text{if } a > b, \\ (1+q^{a})q^{\binom{r+1}{2}} \begin{bmatrix} 2a-1\\a+r \end{bmatrix}_{q} & \text{if } a = b, \\ q^{\binom{r}{2}} \begin{bmatrix} a+b\\a-r \end{bmatrix}_{q} & \text{if } a < b. \end{cases}$$

Our proof is bijective.

Definitions Results

Connections to the literature

• The specialization q = 1 (which ignores maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

Definitions Results

Connections to the literature

• The specialization q = 1 (which ignores maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for q = 1 use repeated applications of the reflection principle, which does not behave well with respect to maj.

Definitions Results

Connections to the literature

 The specialization q = 1 (which ignores maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for q = 1 use repeated applications of the reflection principle, which does not behave well with respect to maj.

• The case *a* > *b* can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Definitions Results

Connections to the literature

• The specialization q = 1 (which ignores maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for q = 1 use repeated applications of the reflection principle, which does not behave well with respect to maj.

 The case a > b can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Their proof is by induction and does not give a bijection.

Definitions Results

Connections to the literature

• The specialization q = 1 (which ignores maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for q = 1 use repeated applications of the reflection principle, which does not behave well with respect to maj.

 The case a > b can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Their proof is by induction and does not give a bijection.

• The theorem has applications to the enumeration of partitions λ with certain restrictions on the ranks $\lambda_i - \lambda'_i$, studied by Corteel-E.-Savage '21+.

Definitions Results

Counting paths crossing a horizontal line

Theorem

L

et
$$a, b, m \ge 0$$
, and let $\ell \in \mathbb{Z} \setminus \{0\}$. If $0 < \ell < a - b$, then
 $G_{a,b}^{\ge 2m+1,\ell}(q) = G_{a,b}^{\ge 2m,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b\\a+2m \end{bmatrix}_q$

Definitions Results

Counting paths crossing a horizontal line

Theorem

Let
$$a, b, m \ge 0$$
, and let $\ell \in \mathbb{Z} \setminus \{0\}$. If $0 < \ell < a - b$, then
 $G_{a,b}^{\ge 2m+1,\ell}(q) = G_{a,b}^{\ge 2m,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b\\a+2m \end{bmatrix}_q$.
If $0 > \ell > a - b$, then
 $G_{a,b}^{\ge 2m+1,\ell}(q) = G_{a,b}^{\ge 2m,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b\\a-2m \end{bmatrix}_q$.

Definitions Results

Counting paths crossing a horizontal line

Theorem

$$\begin{array}{l} \text{Let } a,b,m \geq 0, \text{ and } \text{let } \ell \in \mathbb{Z} \setminus \{0\}. \text{ If } 0 < \ell < a-b, \text{ then} \\ & \quad G_{a,b}^{\geq 2m+1,\ell}(q) = G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b \\ a+2m \end{bmatrix}_{q} \cdot \\ \text{If } 0 > \ell > a-b, \text{ then} \\ & \quad G_{a,b}^{\geq 2m+1,\ell}(q) = G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b \\ a-2m \end{bmatrix}_{q} \cdot \\ \text{If } 0 > \ell < a-b \text{ and } m \geq 1, \text{ then} \\ & \quad G_{a,b}^{\geq 2m,\ell}(q) = G_{a,b}^{\geq 2m-1,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b \\ a+2m-1-\ell \end{bmatrix}_{q} \cdot \\ \text{If } 0 < \ell > a-b \text{ and } m \geq 1, \text{ then} \\ & \quad G_{a,b}^{\geq 2m,\ell}(q) = G_{a,b}^{\geq 2m-1,\ell}(q) = q^{(m-1)(2m-1+\ell)} \begin{bmatrix} a+b \\ a+2m-1-\ell \end{bmatrix}_{q} \cdot \\ \text{If } 0 < \ell > a-b \text{ and } m \geq 1, \text{ then} \\ & \quad G_{a,b}^{\geq 2m,\ell}(q) = G_{a,b}^{\geq 2m-1,\ell}(q) = q^{(m-1)(2m-1+\ell)} \begin{bmatrix} a+b \\ a-2m+1-\ell \end{bmatrix}_{q} \cdot \end{array}$$

Definitions Results

Counting paths crossing a horizontal line

Theorem

$$\begin{array}{l} \text{Let } a,b,m \geq 0, \ and \ let \ \ell \in \mathbb{Z} \setminus \{0\}. \ \ lf \ 0 < \ell < a-b, \ then \\ & G_{a,b}^{\geq 2m+1,\ell}(q) = G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b \\ a+2m \end{bmatrix}_{q} \cdot \\ \text{If } 0 > \ell > a-b, \ then \\ & G_{a,b}^{\geq 2m+1,\ell}(q) = G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b \\ a-2m \end{bmatrix}_{q} \cdot \\ \text{If } 0 > \ell < a-b \ and \ m \geq 1, \ then \\ & G_{a,b}^{\geq 2m,\ell}(q) = G_{a,b}^{\geq 2m-1,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b \\ a+2m-1-\ell \end{bmatrix}_{q} \cdot \\ \text{If } 0 < \ell > a-b \ and \ m \geq 1, \ then \\ & G_{a,b}^{\geq 2m,\ell}(q) = G_{a,b}^{\geq 2m-1,\ell}(q) = q^{(m-1)(2m-1+\ell)} \begin{bmatrix} a+b \\ a-2m+1-\ell \end{bmatrix}_{q} \cdot \\ \text{If } 0 < \ell = a-b, \ then \\ & G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b \\ a+2m \end{bmatrix}_{q} , \ & G_{a,b}^{\geq 2m+1,\ell}(q) = q^{m(2m+1+\ell)} \begin{bmatrix} a+b \\ a+2m+1 \end{bmatrix}_{q} \cdot \\ \text{If } 0 > \ell = a-b, \ then \\ & G_{a,b}^{\geq 2m,\ell}(q) = q^{m(2m-1-\ell)} \begin{bmatrix} a+b \\ a-2m \end{bmatrix}_{q} , \ & G_{a,b}^{\geq 2m+1,\ell}(q) = q^{(m+1)(2m+1-\ell)} \begin{bmatrix} a+b \\ a-2m-1 \end{bmatrix}_{q} \end{array}$$

Sergi Elizalde

Lattice paths by crossings and major index

II. Pairs of paths crossing each other

Definitions Results

Paths with north and east steps

For $A, B \in \mathbb{Z}^2$, let $\mathcal{P}_{A \to B}$ be the set of lattice paths from A to B with steps N = (0, 1) and E = (1, 0).

Definitions Results

Paths with north and east steps

For $A, B \in \mathbb{Z}^2$, let $\mathcal{P}_{A \to B}$ be the set of lattice paths from A to B with steps N = (0, 1) and E = (1, 0).

Descents of $P \in \mathcal{P}_{A \to B}$ are corners EN, and $\operatorname{maj}(P)$ is the sum of the positions of the valleys, where the position is determined by numbering the vertices of P starting from 0.

$$A = (x, y) \xrightarrow{\bullet} 2$$

$$B = (u, v)$$

$$maj(P) = 2 + 7 = 9$$

Definitions Results

Paths with north and east steps

For $A, B \in \mathbb{Z}^2$, let $\mathcal{P}_{A \to B}$ be the set of lattice paths from A to B with steps N = (0, 1) and E = (1, 0).

Descents of $P \in \mathcal{P}_{A \to B}$ are corners EN, and $\operatorname{maj}(P)$ is the sum of the positions of the valleys, where the position is determined by numbering the vertices of P starting from 0.

If A = (x, y) and B = (u, v), MacMahon's formula gives

$$\sum_{P \in \mathcal{P}_{A \to B}} q^{\operatorname{maj}(P)} = \begin{bmatrix} u - x + v - y \\ u - x \end{bmatrix}_{q}.$$

Definitions Results

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step (N or E) as it had when arriving at C.

Definitions Results

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step (N or E) as it had when arriving at C.

$$\mathcal{P}_{A_1 \to B_\circ, A_2 \to B_{\bullet}}^{\geq r} = \{(P, Q) : P \in \mathcal{P}_{A_1 \to B_\circ}, Q \in \mathcal{P}_{A_2 \to B_{\bullet}}, P \text{ and } Q \text{ have } \geq r \text{ crossings}\}.$$

Definitions Results

Crossings of two paths

Definitions Results

Crossings of two paths

We will count pairs of paths with respect to the sum of their major indices and to the number of times they cross each other.

Definitions

Crossings of two paths

A pair in $\mathcal{P}_{A_1 \to B_2, A_2 \to B_1}^{\geq 3}$: -• B1 B_2

We will count pairs of paths with respect to the sum of their major indices and to the number of times they cross each other.

For $r \geq 0$, define the polynomials

$$\mathcal{H}_{A_1 o B_\circ, A_2 o B_ullet}^{\geq r}(q) = \sum_{(P, Q) \in \mathcal{P}_{A_1 o B_\circ, A_2 o B_ullet}^{\geq r}} q^{\operatorname{maj}(P) + \operatorname{maj}(Q)}.$$

Definitions Results

Easy cases and notation

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_\circ = (u_\circ, v_\circ)$, $B_\bullet = (u_\bullet, v_\bullet)$.

For r = 0, we can choose the two paths independently, so

$$H_{A_1 \to B_\circ, A_2 \to B_\bullet}^{\geq 0}(q) = \begin{bmatrix} u_\circ - x_1 + v_\circ - y_1 \\ u_\circ - x_1 \end{bmatrix}_q \begin{bmatrix} u_\bullet - x_2 + v_\bullet - y_2 \\ u_\bullet - x_2 \end{bmatrix}_q$$

Definitions Results

Easy cases and notation

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_\circ = (u_\circ, v_\circ)$, $B_\bullet = (u_\bullet, v_\bullet)$.

For r = 0, we can choose the two paths independently, so

$$\mathcal{H}_{A_1 o B_\circ, A_2 o B_ullet}^{\geq 0}(q) = egin{bmatrix} u_\circ - x_1 + v_\circ - y_1 \ u_\circ - x_1 \end{bmatrix}_q egin{bmatrix} u_ullet - x_2 + v_ullet - y_2 \ u_ullet - x_2 \end{bmatrix}_q.$$

To give a general formula, first define

$$f_{r}(A_{1}, A_{2}, B_{o}, B_{o}; q) := q^{r(r+x_{2}-x_{1})} \begin{bmatrix} u_{o} - x_{1} + v_{o} - y_{1} \\ u_{o} - x_{1} + r \end{bmatrix}_{q} \begin{bmatrix} u_{o} - x_{2} + v_{o} - y_{2} \\ u_{o} - x_{2} - r \end{bmatrix}_{q}$$

Definitions Results

Easy cases and notation

Let
$$A_1=(x_1,y_1)$$
, $A_2=(x_2,y_2)$, $B_\circ=(u_\circ,v_\circ)$, $B_ullet=(u_ullet,v_ullet)$.

For r = 0, we can choose the two paths independently, so

$$\mathcal{H}_{A_1 o B_\circ, A_2 o B_ullet}^{\geq 0}(q) = egin{bmatrix} u_\circ - x_1 + v_\circ - y_1 \ u_\circ - x_1 \end{bmatrix}_q egin{bmatrix} u_ullet - x_2 + v_ullet - y_2 \ u_ullet - x_2 \end{bmatrix}_q.$$

To give a general formula, first define

$$f_{r}(A_{1}, A_{2}, B_{o}, B_{o}; q) := q^{r(r+x_{2}-x_{1})} \begin{bmatrix} u_{o} - x_{1} + v_{o} - y_{1} \\ u_{o} - x_{1} + r \end{bmatrix}_{q} \begin{bmatrix} u_{o} - x_{2} + v_{o} - y_{2} \\ u_{o} - x_{2} - r \end{bmatrix}_{q}$$

Write $A_1 \prec A_2$ to mean that A_1 is strictly northwest of A_2 .

Results

Counting pairs of paths by crossings

Theorem

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_1 = (u_1, v_1)$, $B_2 = (u_2, v_2)$, where $A_1 \prec A_2$ and $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$.

 $\circ B_1$ ∘ B₂

Definitions Results

Counting pairs of paths by crossings

Theorem

ergi Elizalde Lattice paths by crossings and major index

Definitions Results

Counting pairs of paths by crossings

Theorem

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_1 = (u_1, v_1)$, $B_2 = (u_2, v_2)$, where $A_1 \prec A_2$ and $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$. Then, for all $m \ge 0$, $H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m+1}(q) = H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m}(q) = f_{2m}(A_1, A_2, B_2, B_1; q)$,

and for all
$$m \ge 1$$
,
 $H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m}(q) = H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m-1}(q) = f_{2m-1}(A_1, A_2, B_2, B_1; q).$

Definitions Results

Counting pairs of paths by crossings

Theorem

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_1 = (u_1, v_1)$, $B_2 = (u_2, v_2)$, where $A_1 \prec A_2$ and $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$. Then, for all $m \ge 0$, $H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m+1}(q) = H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m}(q) = f_{2m}(A_1, A_2, B_2, B_1; q)$,

and for all $m \ge 1$, $H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m}(q) = H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m-1}(q) = f_{2m-1}(A_1, A_2, B_2, B_1; q).$ Now let A = (x, y) and B = (u, v).
Definitions Results

Counting pairs of paths by crossings

Theorem

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_1 = (u_1, v_1)$, $B_2 = (u_2, v_2)$, where $A_1 \prec A_2$ and $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$. Then, for all $m \ge 0$, $H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m+1}(q) = H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m}(q) = f_{2m}(A_1, A_2, B_2, B_1; q)$,

and for all
$$m \ge 1$$
,
 $H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m}(q) = H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m-1}(q) = f_{2m-1}(A_1, A_2, B_2, B_1; q)$.
Now let $A = (x, y)$ and $B = (u, v)$. Then, for all $r \ge 0$,
 $H_{A \to B_1, A \to B_2}^{\ge r}(q) = f_r(A, A, B_1, B_2; q)$,
 $H_{A_1 \to B, A_2 \to B}^{\ge r}(q) = f_r(A_1, A_2, B, B; q)$,

Definitions Results

Counting pairs of paths by crossings

Theorem

Let
$$A_1 = (x_1, y_1)$$
, $A_2 = (x_2, y_2)$, $B_1 = (u_1, v_1)$, $B_2 = (u_2, v_2)$, where $A_1 \prec A_2$ and $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$. Then, for all $m \ge 0$, $H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m+1}(q) = H_{A_1 \to B_2, A_2 \to B_1}^{\ge 2m}(q) = f_{2m}(A_1, A_2, B_2, B_1; q)$,

and for all
$$m \ge 1$$
,
 $H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m}(q) = H_{A_1 \to B_1, A_2 \to B_2}^{\ge 2m-1}(q) = f_{2m-1}(A_1, A_2, B_2, B_1; q)$.
Now let $A = (x, y)$ and $B = (u, v)$. Then, for all $r \ge 0$,
 $H_{A \to B_1, A \to B_2}^{\ge r}(q) = f_r(A, A, B_1, B_2; q)$,
 $H_{A_1 \to B, A_2 \to B}^{\ge r}(q) = f_r(A_1, A_2, B, B; q)$,
 $H_{A \to B, A \to B}^{\ge r}(q) = \begin{cases} f_0(A, A, B, B; q) & \text{if } r = 0, \\ 2\sum_{j\ge 1}(-1)^{j-1}f_{r+j}(A, A, B, B; q) & \text{if } r \ge 1. \end{cases}$

Definitions Results

Counting pairs of paths by crossings

With the specialization q = 1 (which ignores maj), the theorem still holds when removing the requirement $x_1 + y_1 = x_2 + y_2$.

Definitions Results

Counting pairs of paths by crossings

With the specialization q = 1 (which ignores maj), the theorem still holds when removing the requirement $x_1 + y_1 = x_2 + y_2$.

In this case,

$$f_r(A_1, A_2, B_{\circ}, B_{\bullet}; 1) = \binom{u_{\circ} - x_1 + v_{\circ} - y_1}{u_{\circ} - x_1 + r} \binom{u_{\bullet} - x_2 + v_{\bullet} - y_2}{u_{\bullet} - x_2 - r}.$$

Definitions Results

Counting pairs of paths by crossings

With the specialization q = 1 (which ignores maj), the theorem still holds when removing the requirement $x_1 + y_1 = x_2 + y_2$.

In this case,

$$f_r(A_1, A_2, B_{\circ}, B_{\bullet}; 1) = \binom{u_{\circ} - x_1 + v_{\circ} - y_1}{u_{\circ} - x_1 + r} \binom{u_{\bullet} - x_2 + v_{\bullet} - y_2}{u_{\bullet} - x_2 - r}.$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.

Definitions Results

Counting pairs of paths by crossings

With the specialization q = 1 (which ignores maj), the theorem still holds when removing the requirement $x_1 + y_1 = x_2 + y_2$.

In this case,

$$f_r(A_1, A_2, B_{\circ}, B_{\bullet}; 1) = \binom{u_{\circ} - x_1 + v_{\circ} - y_1}{u_{\circ} - x_1 + r} \binom{u_{\bullet} - x_2 + v_{\bullet} - y_2}{u_{\bullet} - x_2 - r}.$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.

However, this method does not prove the refinement by maj.

Definitions Results

Counting pairs of paths by crossings

With the specialization q = 1 (which ignores maj), the theorem still holds when removing the requirement $x_1 + y_1 = x_2 + y_2$.

In this case,

$$f_r(A_1, A_2, B_{\circ}, B_{\bullet}; 1) = \binom{u_{\circ} - x_1 + v_{\circ} - y_1}{u_{\circ} - x_1 + r} \binom{u_{\bullet} - x_2 + v_{\bullet} - y_2}{u_{\bullet} - x_2 - r}.$$

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Gessel-Viennot determinant counting non-intersecting tuples of paths.

However, this method does not prove the refinement by maj.

Our proof of the refined case is related to Krattenthaler's '95 refinement of the Gessel-Viennot determinant by maj. However, our bijections have simple descriptions in terms of paths.

 Paths crossing a line
 The bijections $\bar{\tau}$ and $\bar{\sigma}$

 Pairs of paths crossing each other
 The bijection θ_r for pairs of paths

 Proof ideas
 The bijections τ and σ for paths crossing a line

III. Some bijections used in the proofs

Sergi Elizalde Lattice paths by crossings and major index

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

The bijections $ar{ au}$ and $ar{\sigma}$

Partition $\mathcal{P}_{A \to B} = \mathcal{P}^{E}_{A \to B} \cup \mathcal{P}^{N}_{A \to B}$ according to the last step of the path. Let $\mathbf{v} = (1, -1)$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

The bijections $ar{ au}$ and $ar{ au}$

Partition $\mathcal{P}_{A \to B} = \mathcal{P}^{E}_{A \to B} \cup \mathcal{P}^{N}_{A \to B}$ according to the last step of the path. Let $\mathbf{v} = (1, -1)$.

Define a bijection

$$\overline{\tau}: \mathcal{P}^{E}_{A \to B} \to \mathcal{P}^{N}_{A+\mathbf{v} \to B}$$

by placing the NE corners of $\overline{\tau}(P)$ at the coordinates of the EN corners of P:

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

The bijections $ar{ au}$ and $ar{\sigma}$

Partition $\mathcal{P}_{A \to B} = \mathcal{P}^{E}_{A \to B} \cup \mathcal{P}^{N}_{A \to B}$ according to the last step of the path. Let $\mathbf{v} = (1, -1)$.

Define a bijection

$$\overline{\tau}: \mathcal{P}^{E}_{A \to B} \to \mathcal{P}^{N}_{A+\mathbf{v} \to B}$$

by placing the NE corners of $\overline{\tau}(P)$ at the coordinates of the EN corners of P:

If A=(x,y) and B=(u,v), one can show that $ext{maj}(ar{ au}(P))= ext{maj}(P)+u-x-1.$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

The bijections $ar{ au}$ and $ar{ au}$

Similarly, define a bijection

$$\bar{\sigma}: \mathcal{P}^{N}_{A \to B} \to \mathcal{P}^{E}_{A-\mathbf{v} \to B}$$

by placing the *EN* corners of $\bar{\sigma}(P)$ at the coordinates of the *NE* corners of *P*:

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

The bijections $ar{ au}$ and $ar{ au}$

Similarly, define a bijection

$$\bar{\sigma}: \mathcal{P}^{N}_{A \to B} \to \mathcal{P}^{E}_{A-\mathbf{v} \to B}$$

by placing the *EN* corners of $\bar{\sigma}(P)$ at the coordinates of the *NE* corners of *P*:

If A = (x, y) and B = (u, v), one can show that

 $\operatorname{maj}(\overline{\sigma}(P)) = \operatorname{maj}(P) - u + x.$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{A_1 \to B_o, A_2 \to B_{\bullet}}^{\geq r}$, let C be the rth crossing from the right. Suppose that P arrives to C with an N, and Q with an E.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{A_1 \to B_o, A_2 \to B_{\bullet}}^{\geq r}$, let C be the rth crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P = P_I P_R$ and $Q = Q_I Q_R$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{A_1 \to B_0, A_2 \to B_{\bullet}}^{\geq r}$, let C be the rth crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P = P_L P_R$ and $Q = Q_L Q_R$. Let $P' = \bar{\sigma}(P_L)Q_R \in \mathcal{P}_{A_1-\mathbf{v}\to B_{\bullet}}$ and $Q' = \bar{\tau}(Q_L)P_R \in \mathcal{P}_{A_2+\mathbf{v}\to B_{\bullet}}$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

A bijection for pairs of paths

With the right setup, the map $(P, Q) \mapsto (P', Q')$ is a bijection, which we denote by θ_r .

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

A bijection for pairs of paths

With the right setup, the map $(P, Q) \mapsto (P', Q')$ is a bijection, which we denote by θ_r .

If
$$A_1 = (x_1, y_1)$$
 and $A_2 = (x_2, y_2)$, one can show that
maj $(P') + maj(Q') = maj(P) + maj(Q) - (x_2 - x_1 + 1).$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_1 \circ \theta_2 \circ \cdots \circ \theta_r$, which decreases maj by $r(r + x_2 - x_1)$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_1 \circ \theta_2 \circ \cdots \circ \theta_r$, which decreases maj by $r(r + x_2 - x_1)$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_1 \circ \theta_2 \circ \cdots \circ \theta_r$, which decreases maj by $r(r + x_2 - x_1)$.

In this example, we have a bijection

$$\theta_1 \circ \theta_2 : \mathcal{P}_{A_1 \to B_2, A_2 \to B_1}^{\geq 0} \to \mathcal{P}_{A_1 - 2\mathbf{v} \to B_2, A_2 + 2\mathbf{v} \to B_1}^{\geq 0}$$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

The bijection

$$\theta_1 \circ \theta_2 : \mathcal{P}_{A_1 \to B_2, A_2 \to B_1}^{\geq 2} \to \mathcal{P}_{A_1 - 2\mathbf{v} \to B_2, A_2 + 2\mathbf{v} \to B_1}^{\geq 0}$$

decreases maj by $2(2 + x_2 - x_1)$.

The pairs of paths in the image are easy to enumerate.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ **The bijection** θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

The bijection

$$\theta_1 \circ \theta_2 : \mathcal{P}_{A_1 \to B_2, A_2 \to B_1}^{\geq 0} \to \mathcal{P}_{A_1 - 2\mathbf{v} \to B_2, A_2 + 2\mathbf{v} \to B_1}^{\geq 0}$$

decreases maj by $2(2 + x_2 - x_1)$.

The pairs of paths in the image are easy to enumerate. In this case, we obtain

$$H_{A_1 \to B_2, A_2 \to B_1}^{\geq 2}(q) = q^{2(2+x_2-x_1)} \begin{bmatrix} u_2 - x_1 + v_2 - y_1 \\ u_2 - x_1 + 2 \end{bmatrix}_q \begin{bmatrix} u_1 - x_2 + v_1 - y_2 \\ u_1 - x_2 - 2 \end{bmatrix}_q,$$

where $A_1 \prec A_2$ and $B_1 \prec B_2$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ . They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ . They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.

 τ reflects the valleys along the x-axis:

 σ reflects the peaks:

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Bijections for paths crossing a horizontal line

For the problem of a path crossing a horizontal line, we define similar bijections τ and σ . They apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.

 τ reflects the valleys along the x-axis:

 σ reflects the peaks:

 $\operatorname{maj}(\tau(P)) = \operatorname{maj}(P), \qquad \operatorname{maj}(\sigma(P)) = \operatorname{maj}(P) + \#U - \#D - 1$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line,

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the *x*-axis,

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Composing bijections

To prove the theorem about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

In this case, we get a bijection $\mathcal{G}_{a,b}^{\geq 2,\ell} \to \mathcal{G}_{a+2,b-2}$ that decreases maj by $\ell + 3$. The paths in the image are easy to count.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., *DU* or *EN* corners).

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., *DU* or *EN* corners). Here are some sample results: If $0 < \ell < a - b$, then $\sum_{P \in \mathcal{G}_{a,b}^{\geq 2m,\ell}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)} = \sum_{k} t^{k} q^{k^{2} + m(m+1+\ell)} \begin{bmatrix} a \\ k - m \end{bmatrix}_{q} \begin{bmatrix} b \\ k + m \end{bmatrix}_{q}.$

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Further refinements

Our results can be refined by keeping track of the number of descents (i.e., DU or EN corners). Here are some sample results: If $0 < \ell < a - b$, then $\sum_{k=2}^{k} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)} = \sum_{k=1}^{k} t^{k} q^{k^{2} + m(m+1+\ell)} \begin{vmatrix} a \\ k - m \end{vmatrix} \begin{vmatrix} b \\ k + m \end{vmatrix} .$ $P \in \overline{\mathcal{G}_{-}^{\geq 2m,\ell}}$ If $A_1 \prec A_2$, $B_1 \prec B_2$, and $x_1 + y_1 = x_2 + y_2$, then, for all $m \ge 0$, $t^{\operatorname{des}(P)+\operatorname{des}(Q)}q^{\operatorname{maj}(P)+\operatorname{maj}(Q)}$ \mathbf{Y} $(P,Q) \in \mathcal{P}_{A_1 \to B_2, A_2 \to B_1}^{\geq r}$ $=q^{2m(2m+x_2-x_1)}\cdot\left(\sum_{k}t^{k}q^{k(k+2m)}\begin{bmatrix}u_2-x_1\\k\end{bmatrix},\begin{bmatrix}v_2-y_1\\k+2m\end{bmatrix}\right)$ $\cdot \left(\sum t^k q^{k(k-2m)} \begin{bmatrix} u_1 - x_2 \\ k \end{bmatrix} \begin{bmatrix} v_1 - y_2 \\ k - 2m \end{bmatrix} \right).$

Sergi Elizalde Lattice paths by crossings and major index

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Further refinements

Our bijections $\bar{\tau},~\bar{\sigma},~\sigma$ do not behave well with respect to the number of descents.

The bijections $\bar{\tau}$ and $\bar{\sigma}$ The bijection θ_r for pairs of paths The bijections τ and σ for paths crossing a line

Further refinements

Our bijections $\bar{\tau},~\bar{\sigma},~\sigma$ do not behave well with respect to the number of descents.

Instead, we prove these refinements using different bijections that rely on Krattenthaler's two-rowed arrays.
Paths crossing a lineThe bijections $\bar{\tau}$ and $\bar{\sigma}$ Pairs of paths crossing each otherThe bijection θ_r for pairs of pathsProof ideasThe bijections τ and σ for paths crossing a line

----ERCI

arXiv:2106.09878

Sergi Elizalde Lattice paths by crossings and major index