Counting lattice paths by the number of crossings, major index, and descents

Sergi Elizalde
Dartmouth College

Combinatorial and Algebraic Enumeration - May 2022
A celebration of lan Goulden and David Jackson

Overview

We consider the enumeration of lattice paths with two kinds of steps, with respect to some statistics:

Overview

We consider the enumeration of lattice paths with two kinds of steps, with respect to some statistics:

- The number of crossings, which has been studied since the 60 s in connection to random walks. In the special case of zero crossings, one can count tuples of noncrossing paths using the Lindström-Gessel-Viennot determinant.

Overview

We consider the enumeration of lattice paths with two kinds of steps, with respect to some statistics:

- The number of crossings, which has been studied since the 60 s in connection to random walks. In the special case of zero crossings, one can count tuples of noncrossing paths using the Lindström-Gessel-Viennot determinant.
- The number of descents (valleys) and the major index, which were introduced by MacMahon over 100 years ago, and studied by many authors (e.g. yesterday's talk by Terry Visentin).

Overview

We consider the enumeration of lattice paths with two kinds of steps, with respect to some statistics:

- The number of crossings, which has been studied since the 60s in connection to random walks. In the special case of zero crossings, one can count tuples of noncrossing paths using the Lindström-Gessel-Viennot determinant.
- The number of descents (valleys) and the major index, which were introduced by MacMahon over 100 years ago, and studied by many authors (e.g. yesterday's talk by Terry Visentin).

In this talk we will see that combining these statistics one gets surprisingly simple formulas.

I. Paths crossing a line

Lattice paths, descents and major index

Let $\mathcal{G}_{a, b}$ be the set of lattice paths in \mathbb{Z}^{2} with a steps $U=(1,1)$ and b steps $D=(1,-1)$, starting at the origin.

Lattice paths, descents and major index

Let $\mathcal{G}_{a, b}$ be the set of lattice paths in \mathbb{Z}^{2} with a steps $U=(1,1)$ and b steps $D=(1,-1)$, starting at the origin.
Paths $P \in \mathcal{G}_{a, b}$ can be encoded as binary words via $U \mapsto 0, D \mapsto 1$.

Definition

- A descent of P is a valley $D U$, let $\operatorname{des}(P)=\#$ descents.

$$
\operatorname{des}(P)=4
$$

Lattice paths, descents and major index

Let $\mathcal{G}_{a, b}$ be the set of lattice paths in \mathbb{Z}^{2} with a steps $U=(1,1)$ and b steps $D=(1,-1)$, starting at the origin.
Paths $P \in \mathcal{G}_{a, b}$ can be encoded as binary words via $U \mapsto 0, D \mapsto 1$.

Definition

- A descent of P is a valley $D U$, let $\operatorname{des}(P)=\#$ descents.
- The major index, maj (P), is the sum of the x-coordinates of the descents.

Lattice paths and major index

q-binomial coefficients:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

Lattice paths and major index

q-binomial coefficients:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

Lemma (MacMahon)

$$
\sum_{P \in \mathcal{G}_{a, b}} q^{\operatorname{maj}(P)}=\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}
$$

Lattice paths and major index

q-binomial coefficients:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{n}\right)\left(1-q^{n-1}\right) \cdots\left(1-q^{n-k+1}\right)}{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \cdots(1-q)}
$$

Lemma (MacMahon)

$$
\sum_{P \in \mathcal{G}_{a, b}} q^{\operatorname{maj}(P)}=\left[\begin{array}{c}
a+b \\
a
\end{array}\right]_{q}
$$

Example

$$
\sum_{P \in \mathcal{G}_{3,2}} q^{\operatorname{maj}(P)}=\left[\begin{array}{l}
5 \\
3
\end{array}\right]_{q}=1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}
$$

Refinement by the number of descents

Lemma (Fürlinger-Hofbauer '85)

$$
\sum_{P \in \mathcal{G}_{a, b}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}=\sum_{n \geq 0} t^{n} q^{n^{2}}\left[\begin{array}{l}
a \\
n
\end{array}\right]_{q}\left[\begin{array}{l}
b \\
n
\end{array}\right]_{q}
$$

Refinement by the number of descents

Lemma (Fürlinger-Hofbauer '85)

$$
\sum_{P \in \mathcal{G}_{a, b}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}=\sum_{n \geq 0} t^{n} q^{n^{2}}\left[\begin{array}{l}
a \\
n
\end{array}\right]_{q}\left[\begin{array}{l}
b \\
n
\end{array}\right]_{q}
$$

Example

$$
\sum_{P \in \mathcal{G}_{3,2}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}=1+t q+2 t q^{2}+2 t q^{3}+\left(t+t^{2}\right) q^{4}+t^{2} q^{5}+t^{2} q^{6}
$$

Crossing a line

In addition to the statistics des and maj, we will keep track of the number of times that the paths cross a horizontal line.

Crossing a line

In addition to the statistics des and maj, we will keep track of the number of times that the paths cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

Crossing a line

In addition to the statistics des and maj, we will keep track of the number of times that the paths cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

In particular, $\mathcal{G}_{a, b}^{\geq 0, \ell}=\mathcal{G}_{a, b}$.

Crossing a line

In addition to the statistics des and maj, we will keep track of the number of times that the paths cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

In particular, $\mathcal{G}_{a, b}^{\geq 0, \ell}=\mathcal{G}_{a, b}$. We are interested in the polynomials

$$
G_{a, b}^{\geq r, \ell}(t, q)=\sum_{P \in \mathcal{G}_{a, b}^{\geq r, \ell}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)} .
$$

Crossing a line

In addition to the statistics des and maj, we will keep track of the number of times that the paths cross a horizontal line.
For $\ell \in \mathbb{Z}$ and $r \geq 0$, let $\mathcal{G}_{a, b}^{\geq r, \ell}$ be the set of paths in $\mathcal{G}_{a, b}$ that cross the line $y=\ell$ at least r times.

In particular, $\mathcal{G}_{a, b}^{\geq 0, \ell}=\mathcal{G}_{a, b}$. We are interested in the polynomials

$$
G_{a, b}^{\geq r, \ell}(t, q)=\sum_{P \in \mathcal{G}_{a, b}^{\geq r, \ell}} t^{\operatorname{des}(P)} q^{\operatorname{maj}(P)}
$$

For this talk, we focus on the specialization $G_{a, b}^{\geq r, \ell}(q):=G_{a, b}^{\geq r, \ell}(1, q)$.

Crossing the x-axis

First consider the case $\ell=0$, which counts crossings of the x-axis.

Theorem

For any $a, b, r \geq 0$,

$$
G_{a, b}^{\geq r, 0}(q)= \begin{cases}q^{\binom{r+1}{2}}\left[\begin{array}{c}
a+b \\
a+r
\end{array}\right]_{q} & \text { if } a>b, \\
\left(1+q^{a}\right) q^{\binom{r+1}{2}}\left[\begin{array}{c}
2 a-1 \\
a+r
\end{array}\right]_{q} & \text { if } a=b, \\
q^{\binom{r}{2}}\left[\begin{array}{c}
a+b \\
a-r
\end{array}\right]_{q} & \text { if } a<b .\end{cases}
$$

Crossing the x-axis

First consider the case $\ell=0$, which counts crossings of the x-axis.

Theorem

For any $a, b, r \geq 0$,

$$
G_{a, b}^{\geq r, 0}(q)= \begin{cases}q^{\binom{r+1}{2}}\left[\begin{array}{c}
a+b \\
a+r
\end{array}\right]_{q} & \text { if } a>b, \\
\left(1+q^{a}\right) q^{\binom{r+1}{2}}\left[\begin{array}{c}
2 a-1 \\
a+r
\end{array}\right]_{q} & \text { if } a=b, \\
q^{\binom{r}{2}}\left[\begin{array}{c}
a+b \\
a-r
\end{array}\right]_{q} & \text { if } a<b .\end{cases}
$$

We give a bijective proof.

Connections to other work

- The specialization $t=q=1$ (which ignores des and maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

Connections to other work

- The specialization $t=q=1$ (which ignores des and maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $t=q=1$ use repeated applications of the reflection principle, which does not behave well with respect to des or maj.

Connections to other work

- The specialization $t=q=1$ (which ignores des and maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $t=q=1$ use repeated applications of the reflection principle, which does not behave well with respect to des or maj.

- The case $t=1$ and $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic.

Connections to other work

- The specialization $t=q=1$ (which ignores des and maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $t=q=1$ use repeated applications of the reflection principle, which does not behave well with respect to des or maj.

- The case $t=1$ and $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic. Their proof is by induction and does not give a bijection.

Connections to other work

- The specialization $t=q=1$ (which ignores des and maj) is due to Engelberg '65 and Sen '65, and has later been rediscovered by other authors.

The proofs for $t=q=1$ use repeated applications of the reflection principle, which does not behave well with respect to des or maj.

- The case $t=1$ and $a>b$ can be shown to be equivalent to a result of Seo-Yee '18 about counting ballot paths with marked returns by a different statistic. Their proof is by induction and does not give a bijection.
- The theorem has applications to the enumeration of partitions λ with certain restrictions on the ranks $\lambda_{i}-\lambda_{i}^{\prime}$, studied by Corteel-E.-Savage '22+.

Crossing an arbitrary horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

Crossing an arbitrary horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

If $0>\ell>a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} .
$$

Crossing an arbitrary horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m
\end{array}\right]_{q} .
$$

If $0>\ell>a-b$, then

$$
\begin{aligned}
& -b \text {, then } \\
& G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} \text {. }
\end{aligned}
$$

If $0>\ell<a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a+2 m-1-\ell
\end{array}\right]_{q} .
$$

If $0<\ell>a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{(m-1)(2 m-1+\ell)}\left[\begin{array}{c}
a+b \\
a-2 m+1-\ell
\end{array}\right]_{q}
$$

Crossing an arbitrary horizontal line

Theorem

Let $a, b, m \geq 0$, and let $\ell \in \mathbb{Z} \backslash\{0\}$. If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}
a+b \\
a+2 m]_{q}
\end{array}\right.
$$

If $0>\ell>a-b$, then

$$
G_{a, b}^{\geq 2 m+1, \ell}(q)=G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a-2 m
\end{array}\right]_{q} .
$$

If $0>\ell<a-b$ and $m \geq 1$, then

$$
G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}
a+b \\
a+2 m-1-\ell
\end{array}\right]_{q} .
$$

If $0<\ell>a-b$ and $m \geq 1$, then

$$
\begin{aligned}
& G_{a, b}^{\geq 2 m, \ell}(q)=G_{a, b}^{\geq 2 m-1, \ell}(q)=q^{(m-1)(2 m-1+\ell)}\left[\begin{array}{c}
a+b \\
a-2 m+1-\ell]_{q} .
\end{array} .=a-b,\right. \text { then }
\end{aligned}
$$

If $0<\ell=a-b$, then
$G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}a+b \\ a+2 m\end{array}\right]_{q}, \quad G_{a, b}^{\geq 2 m+1, \ell}(q)=q^{m(2 m+1+\ell)}\left[\begin{array}{c}a+b \\ a+2 m+1\end{array}\right]_{q}$.
If $0>\ell=a-b$, then
$G_{a, b}^{\geq 2 m, \ell}(q)=q^{m(2 m-1-\ell)}\left[\begin{array}{c}a+b \\ a-2 m\end{array}\right]_{q}, \quad G_{a, b}^{\geq 2 m+1, \ell}(q)=q^{(m+1)(2 m+1-\ell)}\left[\begin{array}{c}a+b \\ a-2 m-1\end{array}\right]_{q}$.

II. Pairs of paths crossing each other

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.

$$
A=(x, y) \curvearrowleft \Gamma^{B=(u, v)}
$$

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.
A descent of $P \in \mathcal{P}_{A \rightarrow B}$ is a corner $E N, \operatorname{des}(P)=\#$ descents,

$$
\begin{aligned}
& \operatorname{des}(P)=2 \\
& A=(x, y)
\end{aligned} \quad \square \square B=(u, v)
$$

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.
A descent of $P \in \mathcal{P}_{A \rightarrow B}$ is a corner $E N, \operatorname{des}(P)=\#$ descents, $\operatorname{maj}(P)$ is the sum of the positions of the descents, determined by numbering the vertices of P starting from 0 .

$$
\begin{gathered}
\operatorname{des}(P)=2 \\
A=(x, y) \longmapsto\left\{\begin{array}{l}
7 \\
\operatorname{maj}(P)=2+7, v) \\
2
\end{array}, 9\right.
\end{gathered}
$$

Paths with north and east steps

For $A, B \in \mathbb{Z}^{2}$, let $\mathcal{P}_{A \rightarrow B}$ be the set of lattice paths from A to B with steps $N=(0,1)$ and $E=(1,0)$.
A descent of $P \in \mathcal{P}_{A \rightarrow B}$ is a corner $E N, \operatorname{des}(P)=\#$ descents, $\operatorname{maj}(P)$ is the sum of the positions of the descents, determined by numbering the vertices of P starting from 0 .

$$
\begin{gathered}
\operatorname{des}(P)=2\left\{\begin{array}{l}
\square \\
A=(x, y) \longmapsto \\
\operatorname{maj}(P)=2
\end{array}\right)=(u, v) \\
2
\end{gathered}
$$

MacMahon's formula gives

$$
\sum_{P \in \mathcal{P}_{A \rightarrow B}} q^{\operatorname{maj}(P)}=\left[\begin{array}{c}
u-x+v-y \\
u-x
\end{array}\right]_{q}
$$

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step $(N$ or E) as it had when arriving at C.

crossings

Crossings of two paths

A crossing of two paths P and Q is a common vertex C such that:

- P and Q disagree in the step arriving at C;
- at the first step after C where P and Q disagree, each path has the same type of step (N or E) as it had when arriving at C.

crossings

not a crossing

$$
\begin{aligned}
\mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq r}=\{(P, Q): & P \in \mathcal{P}_{A_{1} \rightarrow B_{0}}, Q \in \mathcal{P}_{A_{2} \rightarrow B_{\bullet}} \\
& P \text { and } Q \text { have } \geq r \text { crossings }\} .
\end{aligned}
$$

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:
In addition to des and maj, we will keep track of the number of times that the paths cross each other.

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:
In addition to des and maj, we will keep track of the number of times that the paths cross each other.

For $r \geq 0$, define the polynomials

$$
H_{\bar{A}_{1} \rightarrow B_{\circ}, A_{2} \rightarrow B_{\bullet}}^{\geq r}(t, q)=\sum_{(P, Q) \in \mathcal{P}_{\substack{\geq r}}^{\geq r} B_{\circ}, A_{2} \rightarrow B_{\bullet}} t^{\operatorname{des}(P)+\operatorname{des}(Q)} q^{\operatorname{maj}(P)+\operatorname{maj}(Q)}
$$

Crossings of two paths

A pair in $\mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 3}$:
In addition to des and maj, we will keep track of the number of times that the paths cross each other.

For $r \geq 0$, define the polynomials

$$
\begin{aligned}
& H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\mathbf{0}}}^{\geq r}(t, q)=\quad \sum^{\operatorname{des}(P)+\operatorname{des}(Q)} q^{\operatorname{maj}(P)+\operatorname{maj}(Q)} \\
& (P, Q) \in \mathcal{P}_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}
\end{aligned}
$$

and their specialization $H_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq r}(q):=H_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\stackrel{>}{r}}(1, q)$.

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{0}-x_{1}+v_{0}-y_{1} \\
u_{0}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q} .
$$

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{\circ}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{\circ}-x_{1}+v_{\circ}-y_{1} \\
u_{\circ}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q}
$$

To give a general formula, first define
$f_{r, A_{1}, A_{2}, B_{2}, B_{1}}(q):=q^{r\left(r+x_{2}-x_{\mathbf{1}}\right)}\left[\begin{array}{c}u_{2}-x_{1}+v_{2}-y_{1} \\ u_{2}-x_{1}+r\end{array}\right]_{q}\left[\begin{array}{c}u_{1}-x_{2}+v_{1}-y_{2} \\ u_{1}-x_{2}-r\end{array}\right]_{q}$.

Easy cases and notation

$$
\text { Let } A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right) \text {. }
$$

For $r=0$, we can choose the two paths independently, so

$$
H_{A_{1} \rightarrow B_{\circ}, A_{2} \rightarrow B_{\bullet}}^{\geq 0}(q)=\left[\begin{array}{c}
u_{\circ}-x_{1}+v_{\circ}-y_{1} \\
u_{\circ}-x_{1}
\end{array}\right]_{q}\left[\begin{array}{c}
u_{\bullet}-x_{2}+v_{\bullet}-y_{2} \\
u_{\bullet}-x_{2}
\end{array}\right]_{q}
$$

To give a general formula, first define
$f_{r, A_{1}, A_{2}, B_{2}, B_{1}}(q):=q^{r\left(r+x_{\mathbf{2}}-x_{\mathbf{1}}\right)}\left[\begin{array}{c}u_{2}-x_{1}+v_{2}-y_{1} \\ u_{2}-x_{1}+r\end{array}\right]_{q}\left[\begin{array}{c}u_{1}-x_{2}+v_{1}-y_{2} \\ u_{1}-x_{2}-r\end{array}\right]_{q}$.

Write $A_{1} \prec A_{2}$ to mean that A_{1} is strictly northwest of A_{2}.

Counting pairs of paths by crossings

Theorem
 Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$.

- B_{1}
- B_{2}
A_{1} 。
A_{2}.

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m, A_{1}, A_{2}, B_{2}, B_{1}}(q)
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m, A_{1}, A_{2}, B_{2}, B_{1}}(q)
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m-1}(q)=f_{2 m-1, A_{1}, A_{2}, B_{2}, B_{1}}(q) .
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m, A_{1}, A_{2}, B_{2}, B_{1}}(q)
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m-1}(q)=f_{2 m-1, A_{1}, A_{2}, B_{2}, B_{1}}(q) .
$$

Now let $A=(x, y)$ and $B=(u, v)$.

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m, A_{1}, A_{2}, B_{2}, B_{1}}(q)
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m-1}(q)=f_{2 m-1, A_{1}, A_{2}, B_{2}, B_{1}}(q) .
$$

Now let $A=(x, y)$ and $B=(u, v)$. Then, for all $r \geq 0$,

$$
\begin{aligned}
& H_{A \rightarrow B_{1}, A \rightarrow B_{2}}^{\geq}(q)=f_{r, A, A, B_{2}, B_{1}}(q), \\
& H_{A_{1} \rightarrow B, A_{2} \rightarrow B}^{\geq r}(q)=f_{r, A_{1}, A_{2}, B, B}(q),
\end{aligned}
$$

Counting pairs of paths by crossings

Theorem

Let $A_{1}=\left(x_{1}, y_{1}\right), A_{2}=\left(x_{2}, y_{2}\right), B_{1}=\left(u_{1}, v_{1}\right), B_{2}=\left(u_{2}, v_{2}\right)$, where $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$. Then, for all $m \geq 0$,

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m+1}(q)=H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(q)=f_{2 m, A_{1}, A_{2}, B_{2}, B_{1}}(q)
$$

and for all $m \geq 1$,

$$
H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m}(q)=H_{A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}}^{\geq 2 m-1}(q)=f_{2 m-1, A_{1}, A_{2}, B_{2}, B_{1}}(q) .
$$

Now let $A=(x, y)$ and $B=(u, v)$. Then, for all $r \geq 0$,

$$
\begin{aligned}
H_{A \rightarrow B_{1}, A \rightarrow B_{2}}^{\geq r}(q) & =f_{r, A, A, B_{2}, B_{1}}(q), \\
H_{A_{1} \rightarrow B, A_{2} \rightarrow B}^{\geq r}(q) & =f_{r, A_{1}, A_{2}, B, B}(q), \\
H_{A \rightarrow B, A \rightarrow B}^{\geq r}(q) & = \begin{cases}f_{0, A, A, B, B}(q) & \text { if } r=0, \\
2 \sum_{j \geq 1}(-1)^{j-1} f_{r+j, A, A, B, B}(q) & \text { if } r \geq 1 .\end{cases}
\end{aligned}
$$

Counting pairs of paths by crossings

With the specialization $t=q=1$ (which ignores des and maj), the theorem still holds without the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

Counting pairs of paths by crossings

With the specialization $t=q=1$ (which ignores des and maj), the theorem still holds without the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Lindström-Gessel-Viennot (LGV) determinantal formula for non-intersecting paths.

Counting pairs of paths by crossings

With the specialization $t=q=1$ (which ignores des and maj), the theorem still holds without the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Lindström-Gessel-Viennot (LGV) determinantal formula for non-intersecting paths.

However, this method does not prove the refinement by des or maj, so we need different tools.

Counting pairs of paths by crossings

With the specialization $t=q=1$ (which ignores des and maj), the theorem still holds without the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.
This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Lindström-Gessel-Viennot (LGV) determinantal formula for non-intersecting paths.

However, this method does not prove the refinement by des or maj, so we need different tools.

For the refinement by maj, we give bijections that have simple descriptions in terms of paths.

Counting pairs of paths by crossings

With the specialization $t=q=1$ (which ignores des and maj), the theorem still holds without the requirement $x_{1}+y_{1}=x_{2}+y_{2}$.

This case can be proved by repeatedly swapping prefixes of the paths, similarly to the proof of the Lindström-Gessel-Viennot (LGV) determinantal formula for non-intersecting paths.

However, this method does not prove the refinement by des or maj, so we need different tools.

For the refinement by maj, we give bijections that have simple descriptions in terms of paths.

For the further refinement by des, our proof is inspired by Krattenthaler's ' 95 refinements of the LGV determinant by des and maj. It is still bijective but relies on certain two-rowed arrays.

III. Some bijections used in the proofs

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.
Define a bijection

$$
\bar{\tau}: \mathcal{P}_{A \rightarrow B}^{E} \rightarrow \mathcal{P}_{A+v \rightarrow B}^{N}
$$

by placing the $N E$ corners of $\bar{\tau}(P)$ at the coordinates of the $E N$ corners of P :

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Partition $\mathcal{P}_{A \rightarrow B}=\mathcal{P}_{A \rightarrow B}^{E} \cup \mathcal{P}_{A \rightarrow B}^{N}$ according to the last step of the path. Let $\mathbf{v}=(1,-1)$.
Define a bijection

$$
\bar{\tau}: \mathcal{P}_{A \rightarrow B}^{E} \rightarrow \mathcal{P}_{A+v \rightarrow B}^{N}
$$

by placing the $N E$ corners of $\bar{\tau}(P)$ at the coordinates of the $E N$ corners of P :

If $A=(x, y)$ and $B=(u, v)$, one can show that

$$
\operatorname{maj}(\bar{\tau}(P))=\operatorname{maj}(P)+u-x-1
$$

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Its inverse is the bijection

$$
\bar{\sigma}: \mathcal{P}_{A \rightarrow B}^{N} \rightarrow \mathcal{P}_{A-v \rightarrow B}^{E}
$$

obtained by placing the $E N$ corners of $\bar{\sigma}(P)$ at the coordinates of the NE corners of P :

The bijections $\bar{\tau}$ and $\bar{\sigma}$

Its inverse is the bijection

$$
\bar{\sigma}: \mathcal{P}_{A \rightarrow B}^{N} \rightarrow \mathcal{P}_{A-v \rightarrow B}^{E}
$$

obtained by placing the $E N$ corners of $\bar{\sigma}(P)$ at the coordinates of the NE corners of P :

If $A=(x, y)$ and $B=(u, v)$, then

$$
\operatorname{maj}(\bar{\sigma}(P))=\operatorname{maj}(P)-u+x
$$

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{\bar{A}_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E.

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{\bullet}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P=P_{L} P_{R}$ and $Q=Q_{L} Q_{R}$.

A bijection for pairs of paths

Given $(P, Q) \in \mathcal{P}_{A_{1} \rightarrow B_{0}, A_{2} \rightarrow B_{0}}^{\geq r}$, let C be the r th crossing from the right. Suppose that P arrives to C with an N, and Q with an E. Splitting the paths at C, write $P=P_{L} P_{R}$ and $Q=Q_{L} Q_{R}$. Let $P^{\prime}=\bar{\sigma}\left(P_{L}\right) Q_{R} \in \mathcal{P}_{A_{1}-\mathbf{v} \rightarrow B_{0}} \quad$ and $\quad Q^{\prime}=\bar{\tau}\left(Q_{L}\right) P_{R} \in \mathcal{P}_{A_{2}+\mathbf{v} \rightarrow B_{0}}$.

$$
A_{2}+\mathbf{v}
$$

A bijection for pairs of paths

With the right setup, this map $(P, Q) \mapsto\left(P^{\prime}, Q^{\prime}\right)$ is a bijection, which we denote by θ_{r}.

A bijection for pairs of paths

With the right setup, this map $(P, Q) \mapsto\left(P^{\prime}, Q^{\prime}\right)$ is a bijection, which we denote by θ_{r}.

If $A_{1}=\left(x_{1}, y_{1}\right)$ and $A_{2}=\left(x_{2}, y_{2}\right)$, one can show that

$$
\operatorname{maj}\left(P^{\prime}\right)+\operatorname{maj}\left(Q^{\prime}\right)=\operatorname{maj}(P)+\operatorname{maj}(Q)-\left(x_{2}-x_{1}+1\right)
$$

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

Composing bijections

To prove our theorem about pairs of paths, we use compositions such as $\theta_{1} \circ \theta_{2} \circ \cdots \circ \theta_{r}$, which decreases maj by $r\left(r+x_{2}-x_{1}\right)$.

In this example, we have a bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{\bar{A}_{1}-2 \mathbf{v} \rightarrow B_{2}, A_{2}+2 \mathbf{v} \rightarrow B_{1}}^{\geq 0} .
$$

Composing bijections

The bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{\bar{A}_{1}-2 v \rightarrow B_{2}, A_{2}+2 v \rightarrow B_{1}}^{\geq 0}
$$

decreases maj by $2\left(2+x_{2}-x_{1}\right)$.
The pairs of paths in the image are easy to enumerate.

Composing bijections

The bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2} \rightarrow \mathcal{P}_{\bar{A}_{1}-2 v \rightarrow B_{2}, A_{2}+2 \mathbf{v} \rightarrow B_{1}}^{\geq 0}
$$

decreases maj by $2\left(2+x_{2}-x_{1}\right)$.
The pairs of paths in the image are easy to enumerate. In this case, with the assumption $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, we obtain

$$
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2}(q)=q^{2\left(2+x_{2}-x_{1}\right)}\left[\begin{array}{c}
u_{2}-x_{1}+v_{2}-y_{1} \\
u_{2}-x_{1}+2
\end{array}\right]_{q}\left[\begin{array}{c}
u_{1}-x_{2}+v_{1}-y_{2} \\
u_{1}-x_{2}-2
\end{array}\right]_{q}
$$

Composing bijections

The bijection

$$
\theta_{1} \circ \theta_{2}: \mathcal{P}_{\bar{A}_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{>2} \rightarrow \mathcal{P}_{\bar{A}_{1}-2 v \rightarrow B_{2}, A_{2}+2 v \rightarrow B_{1}}^{\geq 0}
$$

decreases maj by $2\left(2+x_{2}-x_{1}\right)$.
The pairs of paths in the image are easy to enumerate. In this case, with the assumption $A_{1} \prec A_{2}$ and $B_{1} \prec B_{2}$, we obtain
$H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{>2}(q)=q^{2\left(2+x_{2}-x_{1}\right)}\left[\begin{array}{c}u_{2}-x_{1}+v_{2}-y_{1} \\ u_{2}-x_{1}+2\end{array}\right]_{q}\left[\begin{array}{c}u_{1}-x_{2}+v_{1}-y_{2} \\ u_{1}-x_{2}-2\end{array}\right]_{q}$.

As another application of these bijections, they can be used to give a simpler proof (directly in terms of paths) of Krattenthaler's refinement by maj of the Lindström-Gessel-Viennot determinantal formula for tuples of non-intersecting paths.

Bijections for paths crossing a horizontal line

For the problem of a single path crossing a horizontal line, we define similar bijections τ and σ. These apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.

Bijections for paths crossing a horizontal line

For the problem of a single path crossing a horizontal line, we define similar bijections τ and σ. These apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.
τ reflects the valleys along the x-axis:

σ reflects the peaks:

Bijections for paths crossing a horizontal line

For the problem of a single path crossing a horizontal line, we define similar bijections τ and σ. These apply to paths with U and D steps ending on the x-axis, and they fix the right endpoint.
τ reflects the valleys along the x-axis: σ reflects the peaks:

$$
\operatorname{maj}(\tau(P))=\operatorname{maj}(P), \quad \operatorname{maj}(\sigma(P))=\operatorname{maj}(P)+\# U-\# D-1
$$

Composing bijections

To prove the theorems about paths crossing a line,

Composing bijections

To prove the theorems about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis,

Composing bijections

To prove the theorems about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

Composing bijections

To prove the theorems about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

Composing bijections

To prove the theorems about paths crossing a line, first we shift the path vertically so that the crossed line is the x-axis, then we repeatedly apply σ and τ to certain prefixes:

In this case, we get a bijection $\mathcal{G}_{a, b}^{\geq 2, \ell} \rightarrow \mathcal{G}_{a+2, b-2}$ that decreases maj by $\ell+3$. The paths in the image are easy to count.

Refinement by the number of descents

Our theorems have refinements that also keep track of des (i.e., the number of $D U$ or $E N$ corners).

Refinement by the number of descents

Our theorems have refinements that also keep track of des (i.e., the number of $D U$ or $E N$ corners). Here are some sample formulas:

$$
\text { If } 0<\ell<a-b \text {, then }
$$

$$
G_{a, b}^{\geq 2 m, \ell}(t, q)=\sum_{n} t^{n} q^{n^{2}+m(m+\ell+1)}\left[\begin{array}{c}
a \\
n-m
\end{array}\right]_{q}\left[\begin{array}{c}
b \\
n+m
\end{array}\right]_{q}
$$

Refinement by the number of descents

Our theorems have refinements that also keep track of des (i.e., the number of $D U$ or $E N$ corners). Here are some sample formulas:

If $0<\ell<a-b$, then

$$
G_{a, b}^{\geq 2 m, \ell}(t, q)=\sum_{n} t^{n} q^{n^{2}+m(m+\ell+1)}\left[\begin{array}{c}
a \\
n-m
\end{array}\right]_{q}\left[\begin{array}{c}
b \\
n+m
\end{array}\right]_{q} .
$$

If $A_{1} \prec A_{2}, B_{1} \prec B_{2}$, and $x_{1}+y_{1}=x_{2}+y_{2}$, then, for all $m \geq 0$,

$$
\left.\begin{array}{rl}
H_{A_{1} \rightarrow B_{2}, A_{2} \rightarrow B_{1}}^{\geq 2 m}(t, q) \\
= & q^{2 m\left(2 m+x_{2}-x_{1}\right)}
\end{array}\right)\left(\sum_{n} t^{n} q^{n(n+2 m)}\left[\begin{array}{c}
u_{2}-x_{1} \\
n
\end{array}\right]_{q}\left[\begin{array}{c}
v_{2}-y_{1} \\
n+2 m
\end{array}\right]_{q}\right) .
$$

Refinement by the number of descents

Unfortunately, our bijections $\bar{\tau}, \bar{\sigma}, \sigma$ do not behave well with respect to the number of descents.

Refinement by the number of descents

Unfortunately, our bijections $\bar{\tau}, \bar{\sigma}, \sigma$ do not behave well with respect to the number of descents.

Instead, to prove these refinements, we use different bijections that rely on Krattenthaler's two-rowed arrays.

Refinement by the number of descents

Unfortunately, our bijections $\bar{\tau}, \bar{\sigma}, \sigma$ do not behave well with respect to the number of descents.

Instead, to prove these refinements, we use different bijections that rely on Krattenthaler's two-rowed arrays.

THANK YOU

References:

- S.E., Counting lattice paths by crossings and major index I: the corner-flipping bijections, arXiv:2106.09878.
- S.E., Counting lattice paths by crossings and major index II: tracking descents via two-rowed arrays, arXiv:2112.05696

