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Genomic instability
Model assumptions

Missegregation

During mitosis, cancer cells undergo chromosome missegregation
events, causing one of the two daughter cells to inherit more copies
of a chromosome than the other.
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Advantages of genomic instability

A cell dies if it loses all copies of a chromosome or ends up with
too many. In addition, each cell has some probability of
spontaneously dying at any time.

It has been observed that
I more copies of oncogenic chromosomes (with proliferative

genes) increase the cell’s chances of surviving, while
I more copies of tumor supressive chromosomes (with

anti-profiferative genes) increase its chances of dying.

A recent genomic analysis by Davoli et al. assigned scores to
individual chromosomes based on the presence of such genes.

Since the karyotype of a cell affects its fitness level, genomic
instability allows for Darwinian selection to occur.
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History

The first stochastic model of missegregation was developed by
Gusev, Kagansky and Dooley in 2000. It has a few disadvantages:

1. Simulations are very slow.
2. It can’t be analyzed mathematically to find long-term behavior.
3. It doesn’t account for chromosome scores, and consequently

its predictions are unrealistic.

To address 1 and 2, we will build a Markov chain model to study
how the probability distribution of karyotypes evolves over time.

To address 3, we will assign a survival probability to each cell based
on the chromosome scores computed by Davoli et al.
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Assumptions of our model

I Each chromosome copy has probability p (typically
p ≈ 0.0025) of missegregating at a given cell division,
independent from other copies.

I If the number of copies of any chromosome reaches 0 or goes
above N (typically N = 8), the cell dies.

I Starting from a single founder cell, all the cells in the colony
divide simultaneously at each generation.

The karyotype of a cell is the vector (i1, i2, . . . , i23) where

ik = # copies of chromosome k .

A live cell has 1 ≤ ik ≤ N for all k .
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Simulations vs. Markov chain

One can implement this algorithm and run a forward simulation,
keeping track of the karyotypes of all the cells in the colony.
Unfortunately, that is extremely show.

Instead, we will build a Markov chain that describes the distribution
of karyotypes probabilistically. The advantages are:

I Computations are much faster, since they amount to taking
powers of matrices.

I We can analyze the Markov chain mathematically to predict
long-term behavior.
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A key simplification

Since missegregations of different chromosomes are independent,
we focus on one type of chromosome at a time.

For each of the 23 chromosomes, we build a Markov chain with
states 0, 1, 2, . . . ,N. State i corresponds to cells with i copies of
the chromosome. State 0 corresponds to (dead) cells with 0 or
> N copies.

The probability of a given karyoptype (i1, . . . , i23) is obtained by
multiplying the probability that the Markov chain corresponding to
chromosome k is in state ik for 1 ≤ k ≤ 23.

Each step is a cell division, and one of the 2 daughter cells is
chosen with probability 1/2.
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The Markov chain for the basic model without scores

dead

1 2 3 4 5 6 7 8

1−p 1−2p 1−3p 1−4p 1−5p 1−6p 1−7p 1−8p

p/2 p 3p/2 2p 5p/2 3p 7p/2

p 3p/2 2p 5p/2 3p 7p/2 4p

p/2
4p

1

(we ignore quadratic terms in p for simplicity)
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The transition matrix

Ignoring quadratic terms in p, the transition matrix for the basic
model (without chromosome scores) is

Mij =


1− ip if i = j ,

ip/2 if |i − j | = 1,
0 if |i − j | ≥ 2,

for 1 ≤ i , j ≤ N.

Being more precise, Mij is the coefficient of x j in(p
2
+ (1− p)x +

p

2
x2
)i

≈ ip

2
x i−1 + (1− ip)x i +

ip

2
x i+1 + [terms involving p2].
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The transition matrix

For example, for N = 8, we get

1 0 0 0 0 0 0 0 0
p/2 1− p p/2 0 0 0 0 0 0
0 p 1− 2p p 0 0 0 0 0
0 0 3p/2 1− 3p 3p/2 0 0 0 0
0 0 0 2p 1− 4p 2p 0 0 0
0 0 0 0 5p/2 1− 5p 5p/2 0 0
0 0 0 0 0 3p 1− 6p 3p 0
0 0 0 0 0 0 7p/2 1− 7p 7p/2
4p 0 0 0 0 0 0 4p 1− 8p


.

Let M be the matrix obtained by removing the row and column corresponding
to state 0.
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Properties of the transition matrix

I State 0 is an absorbing state, and so a high proportion of the
2g potential cells after g generations are dead. Still, we are
interested in the distribution of copy numbers among live cells.

I If v is a vector describing the initial distribution of the number
of copies of a given chromosome, the vector vMg , normalized
so its entries sum to one, is the distribution of copy numbers
among live cells after g generations.

I Letting sg (i) = sum of the entries of the ith row of Mg ,

2g
23∏
k=1

sg (ik)

is the expected number of live cells after g generations when
the founder cell has ik copies of chromosome k for each k .
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Evolution of the number of chromosome copies over time

Proportion of live cells having each number of copies, for the
Markov chain model with N = 8 and a founder cell with f copies:

g

fr
ac
ti
on

of
vi
ab
le

ce
lls

1
2
3
4
5678

number of chromosome
copies: 1, 2, 3, 4, 5, 6, 7, 8

g

1
2345678

p = 0.001, f = 2 p = 0.0025, f = 4
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The limiting behavior

We are interested in the limiting distribution of the copy numbers
among live cells as g →∞.

Since the Markov chain has an absorbing state, its stationary
distribution is trivial and unhelpful.

However, we can use a result from probability theory to restrict to
non-absorbing states (equivalently, live cells):

Theorem
Let ρ be the largest eigenvalue of M. The limiting distribution
conditional on the non-absorbing states is given by the vector v
satisfying vM = ρv and

∑N
i=1 vi = 1.
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The limiting behavior

In particular, this limiting distribution does not depend on the
karyotype of the founder cell.

Surprisingly, it does not depend on the missegregation rate either:

Theorem
The limiting distribution of the above basic model conditional on
the non-absorbing states is independent of p.
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The limiting distribution

Limiting distributions for N = 8, 9, 10, 11, 12, 13, 14, 15, 16:

The most frequent copy number is always 1, which is not very
realistic. This will change once we incorporate chromosome scores.
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Chromosome scores and survival probability

Based on experiments by Davoli et al., we assign a score sk to each
chromosome k . The total score of a cell with karyotype (i1, . . . , i23)
is:

S =
23∑
k=1

sk ik ,

and its survival probability at a given generation is

Qsurv = ec+dS

for some parameters c and d > 0.

Again, we can implement this algorithm and run lengthy simulations.

Instead, we’ll incorporate the chromosome scores into the Markov
chain, and use it to run fast computations and to determine
limiting behavior.
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Decomposing the survival probability

Qsurv = ec+dS = ec+d
∑

k sk ik = ec
23∏
k=1

edsk ik︸ ︷︷ ︸

qk (ik )

.

Let
qk(i) = edsk i = µi

denote the contribution of chromosome k to the survival
probability, where µ = edsk .

Oncogenic ⇔ sk > 0⇔ µ > 1.
Tumor-suppressive ⇔ sk < 0⇔ µ < 1.

This equation allows us to break up the model into 23 independent
Markov chains, one for each type of chromosome.
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The Markov chain for chromosome k

dead

1 2 3 4 5 6 7 8

(1−p)qk (1) (1−2p)qk (2) (1−3p)qk (3) (1−4p)qk (4) (1−5p)qk (5) (1−6p)qk (6) (1−7p)qk (7) (1−8p)qk (8)

1−qk (2)
1−qk (3)

1−qk (4) 1−qk (5)
1−qk (6)

1−qk (7)

pqk (1)
2 pqk (2)

3pqk (3)
2 2pqk (4)

5pqk (5)
2 3pqk (6)

7pqk (7)
2

pqk (2) 3pqk (3)
2

2pqk (4) 5pqk (5)
2

3pqk (6) 7pqk (7)
2

4pqk (8)

pqk (1)
2 + 1−qk (1) 4pqk (8) + 1−qk (8)

1

A cell with i copies of the chromosome has probability 1− qk(i) of
dying, and probability qk(i) of surviving and dividing as in the basic
model.
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The transition matrix

The transition matrix A(k) restricted to live cells is:

A
(k)
ij =


(1− ip) qk(i) if i = j ,

ip qk(i)/2 if |i − j | = 1,
0 if |i − j | ≥ 2,

for 1 ≤ i , j ≤ N.

Letting s
(k)
g (i) = sum of the entries of the ith row of (A(k))g ,

2g
23∏
k=1

s
(k)
g (ik)

is the expected number of live cells after g generations when the
founder cell has ik copies of chromosome k for each k .
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Distribution of the number of chromosome copies over time

In human
chromosomes,
µ ∈ [0.9994, 1.0012].

Fix p = 0.0025 and a
founder cell with 2
copies.

Each curve represents a
number of copies:
1, 2, 3, 4, 5, 6, 7, 8.

µ = 0.9994 µ = 1

µ = 1.0006 µ = 1.0012
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The limiting behavior

As before, if ρ is the largest eigenvalue of A(k), the limiting
distribution conditional on the non-absorbing states is given by the
vector v satisfying vA(k) = ρv and

∑N
i=1 vi = 1.

Again, this limiting distribution does not depend on the number of
copies of the founder cell.

However, unlike for the model without scores, it now depends on p
and on µ (i.e., on the chromosome score).
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The limiting distribution

Liming distributions for µ = 0.9994, 0.9996, 0.9998, 1.0000,
1.0002, 1.0004, 1.0006, 1.0008, 1.0010, 1.0012.

p = 0.001

For higher chromosome scores,
the limiting distribution favors
higher copy numbers.

For positive chromosome scores
(µ > 1), the most frequent copy
number is no longer 1, making
this model more realistic than the
basic model without scores.
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The limiting distribution

Liming distributions for µ = 0.9994, 0.9996, 0.9998, 1.0000,
1.0002, 1.0004, 1.0006, 1.0008, 1.0010, 1.0012.

p = 0.0025 p = 0.01
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The limiting distribution

Limiting distributions for the experimentally found values of µ
corresponding to the 23 human chromosomes:

number of chromosome copies

fr
ac
ti
on

of
vi
ab
le

ce
lls

p = 0.001

number of chromosome copies

p = 0.0025

The black curve is the average of the 23 limiting distributions, and
the black dot on the x-axis is the average number of chromosome
copies.

This average of about 3 copies agrees with observations.
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The average number of copies over time

The evolution of the average number of copies of the 23 human
chromosomes, starting with 2 copies of each.
The average of the 23 averages is shown in black.
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The convergence to ≈ 3 copies is observed in experiments.
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Fraction of live cells after 1000 generations

Using the experimentally found values for the chromosome scores.

The number of live cells is maximized for missegregation rates
around p ≈ 10−3. These are the rates observed in cancer!
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Karyotypic diversity index

The karyotype diversity index measures the heterogeneity of the
colony:

K = −
23∑
k=1

N∑
i=1

ak,i ln ak,i ,

where ak,i = fraction of live cells with i copies of chromosome k .

Plot of K as a function of g and p
(both in a logarithmic scale):

After g ≈ 103 generations, K is
maximized when p ≈ 10−3 again.
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Incorporating drug resistance

Multiplying the survival probability Qsurv by a factor < 1, we can
model targeted therapy. A drug targets genes in a particular
chromosome, decreasing the survival probability.

The target genes can mutate with some probability, becoming no
longer responsive to treatment. Mutated genes are inherited.

The survival probability of the cell depends on the number of
mutated and normal copies of the treated chromosome.
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Modeling mutations

We modify the Markov chain to incorporate mutations.

States are now indexed by pairs (i1, i2) with 1 ≤ i1 + i2 ≤ N,
representing cells having i1 normal copies of the chromosome and i2
mutated copies. For N = 8, there are 44 non-absorbing states.

In a cell division, each normal copy of the chromosome has
probability m ≈ 10−9 of mutating (and becoming resistant). Each
mutated copy has probability r ≈ 10−9/4 of reversing into a normal
copy (amenable to treatment).

For simplicity, let’s disregard highly unlikely events such as a
mutation and a missegregation in the same cell division.
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The modified Markov chain

Arrows leaving a typical node (i1, i2): (let i = i1 + i2)

dead

i1, i2

i1 + 1, i2

i1 − 1, i2 i1, i2 + 1

i1, i2 − 1

i1 − 1, i2 + 1i1 + 1, i2 − 1

1− ip − i1m
2 − i2r

2
i1p
2

i1p
2

i2p
2

i2p
2

i1m
2

i2r
2

1− qs(i)

Missegregations and mutations

, survival probability determined by scores

Sergi Elizalde A Markov-chain model of chromosomal instability



Introduction
The basic model without chromosome scores

The model with chromosome scores
Work in progress

Targeted therapy and mutations
Modeling resistance
Current directions

The modified Markov chain

Arrows leaving a typical node (i1, i2): (let i = i1 + i2)

dead

i1, i2

i1 + 1, i2

i1 − 1, i2 i1, i2 + 1

i1, i2 − 1

i1 − 1, i2 + 1i1 + 1, i2 − 1

(1− ip − i1m
2 − i2r

2 )qs(i)
i1p
2 qs(i)

i1p
2 qs(i)

i2p
2 qs(i)

i2p
2 qs(i)

i1m
2 qs(i)

i2r
2 qs(i)

1− qs(i)

Missegregations and mutations, survival probability determined by scores

Sergi Elizalde A Markov-chain model of chromosomal instability



Introduction
The basic model without chromosome scores

The model with chromosome scores
Work in progress

Targeted therapy and mutations
Modeling resistance
Current directions

Modeling drug resistance

First, we let the tumor grow until it reaches about 109 cells and it
becomes detectable with a CT scan.

Then we apply a drug that targets a given gene, decreasing the
survival probability of cells containing that gene.

Resistance to the drug can be modeled in several ways:

1. Binary resistance: cells with at least one mutated copy of the
treated chromosome are resistant.

2. Graded resistance: the level of resistance depends on the ratio
of copies of normal vs. mutated copies of the treated
chromosome.
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Modeling drug resistance

These plots show the evolution of the number of cells when
applying targeted therapy to chromosome 1, comparing binary
resistance and graded resistance.

weaker treatment stronger treatment
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Work in progress

I Study time to resistance for different parameters and validate
with data obtained by applying different drugs on real patients.

I Whole genome duplication events. Sometimes the genome
of a cell doubles but the cell does not divide. We can model
this for each chromosome individually, introducing transitions
from state i to state 2i in the Markov chain. However, we
currently cannot account for correlations among different
chromosomes, which in practice double simultaneously.

I Arm level events. Sometimes chromosomes can split into
two arms, which missegregate at high rates. Additionally, arms
of different chromosomes can fuse to form neo-chromosomes.

I Keep track of maternal and paternal alleles.
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Thank you!
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