Consecutive patterns in permutations and inversion sequences

Sergi Elizalde
Dartmouth College

Virtual Combinatorics Colloquium, December 3, 2019

Consecutive patterns

$$
\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}
$$

Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.

Definitions

Consecutive patterns

$\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}$.
Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.
In this talk, "occurrence" will mean "consecutive occurrence".

Definitions

Consecutive patterns

$\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}$.
Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.
In this talk, "occurrence" will mean "consecutive occurrence".
Examples:
$\pi=42531$ has an occurrence of $\sigma=132$.

Definitions

Consecutive patterns

$\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}$.
Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.
In this talk, "occurrence" will mean "consecutive occurrence".
Examples:
$\pi=42531$ has an occurrence of $\sigma=132$.
$\pi=15243$ has two occurrences of $\sigma=132$ (namely 152 and 243).

Definitions

Consecutive patterns

$\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}$.
Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.
In this talk, "occurrence" will mean "consecutive occurrence".
Examples:
$\pi=42531$ has an occurrence of $\sigma=132$.
$\pi=15243$ has two occurrences of $\sigma=132$ (namely 152 and 243).
Definition. We say that π contains σ (as a consecutive pattern) if π has an occurrence of σ. Otherwise, π avoids σ.

Let $\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ avoids $\left.\sigma\right\}$.

Definitions

Consecutive patterns

$\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in \mathcal{S}_{n}, \quad \sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \in \mathcal{S}_{m}$.
Definition. An (consecutive) occurrence of σ in π is a subsequence of adjacent entries $\pi_{i} \pi_{i+1} \ldots \pi_{i+m-1}$ in the same relative order as $\sigma_{1} \ldots \sigma_{m}$.
In this talk, "occurrence" will mean "consecutive occurrence".
Examples:
$\pi=42531$ has an occurrence of $\sigma=132$.
$\pi=15243$ has two occurrences of $\sigma=132$ (namely 152 and 243).
Definition. We say that π contains σ (as a consecutive pattern) if π has an occurrence of σ. Otherwise, π avoids σ.

Let $\mathcal{S}_{n}(\sigma)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ avoids $\left.\sigma\right\}$.
Example: 25134 avoids 132.

Consecutive patterns
0 00000

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$.

Peaks play a role in algebraic combinatorics.

Definitions

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.

Definitions

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.
- Occurrences of $12 \ldots m$ are called increasing runs.

Definitions

Consecutive patterns in disguise

- Occurrences of 21 are descents.

The number of permutations in \mathcal{S}_{n} with a given number of descents is an Eulerian number, dating back to 1755.

- Occurrences of 132 or 231 are peaks: $\pi_{i}<\pi_{i+1}>\pi_{i+2}$. Peaks play a role in algebraic combinatorics.
- Permutations avoiding 123 and 321 are called alternating permutations, studied by André in the 19th century: $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\cdots \quad$ or $\pi_{1}>\pi_{2}<\pi_{3}>\pi_{4}<\cdots$ They are counted by the tangent and secant numbers.
- Occurrences of $12 \ldots m$ are called increasing runs.

Disregarding these disguised appearances, the systematic study of consecutive patterns in permutations started about 20 years ago.

Consecutive patterns
000000

Definitions

Generating functions

For a fixed pattern σ, define the generating function

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!}
$$

Definitions

Generating functions

For a fixed pattern σ, define the generating function

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!}
$$

Then $P_{\sigma}(0, z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}$.

Definitions

Generating functions

For a fixed pattern σ, define the generating function

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!}
$$

Then $P_{\sigma}(0, z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}$.
Example:
$P_{21}(0, z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots=e^{z}$
$P_{21}(u, z)=1+z+(1+u) \frac{z^{2}}{2}+\left(u^{2}+4 u+1\right) \frac{z^{3}}{6}+\ldots$

Definitions

Generating functions

For a fixed pattern σ, define the generating function

$$
P_{\sigma}(u, z)=\sum_{n \geq 0} \sum_{\pi \in \mathcal{S}_{n}} u^{\#\{\text { occurrences of } \sigma \text { in } \pi\}} \frac{z^{n}}{n!}
$$

Then $P_{\sigma}(0, z)=\sum_{n \geq 0}\left|\mathcal{S}_{n}(\sigma)\right| \frac{z^{n}}{n!}$.
Example:

$$
\begin{aligned}
& P_{21}(0, z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\cdots=e^{z} \\
& P_{21}(u, z)=1+z+(1+u) \frac{z^{2}}{2}+\left(u^{2}+4 u+1\right) \frac{z^{3}}{6}+\ldots=\frac{1-u}{e^{(u-1) z}-u}
\end{aligned}
$$

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

Consecutive patterns
000000

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

Example: $\quad P_{1234}(0, z)=\frac{2}{\cos z-\sin z+e^{-z}}$.

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

Example: $\quad P_{1234}(0, z)=\frac{2}{\cos z-\sin z+e^{-z}}$.

- Classification of consecutive patterns into equivalence classes. (weak) Wilf-equivalence:
$\sigma \stackrel{N}{\sim} \tau \Longleftrightarrow\left|\mathcal{S}_{n}(\sigma)\right|=\left|\mathcal{S}_{n}(\tau)\right| \forall n \Longleftrightarrow P_{\sigma}(0, z)=P_{\tau}(0, z)$

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

Example: $\quad P_{1234}(0, z)=\frac{2}{\cos z-\sin z+e^{-z}}$.

- Classification of consecutive patterns into equivalence classes. (weak) Wilf-equivalence:
$\sigma \stackrel{N}{\sim} \tau \Longleftrightarrow\left|\mathcal{S}_{n}(\sigma)\right|=\left|\mathcal{S}_{n}(\tau)\right| \forall n \Longleftrightarrow P_{\sigma}(0, z)=P_{\tau}(0, z)$
strong Wilf-equivalence: $\sigma \stackrel{\stackrel{s}{\sim} \tau \Longleftrightarrow P_{\sigma}(u, z)=P_{\tau}(u, z), ~(0, z)}{ }$

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

Example: $\quad P_{1234}(0, z)=\frac{2}{\cos z-\sin z+e^{-z}}$.

- Classification of consecutive patterns into equivalence classes.
(weak) Wilf-equivalence:
$\sigma \stackrel{N}{\sim} \tau \Longleftrightarrow\left|\mathcal{S}_{n}(\sigma)\right|=\left|\mathcal{S}_{n}(\tau)\right| \forall n \Longleftrightarrow P_{\sigma}(0, z)=P_{\tau}(0, z)$
strong Wilf-equivalence: $\sigma \stackrel{\stackrel{s}{\sim} \tau \Longleftrightarrow P_{\sigma}(u, z)=P_{\tau}(u, z), ~(0, z)}{ }$
Example: $1342 \stackrel{s}{\sim} 1432$.

Definitions

Some questions about consecutive patterns

- Exact enumeration: find formulas for $P_{\sigma}(u, z)$ or $P_{\sigma}(0, z)$.

$$
\text { Example: } \quad P_{1234}(0, z)=\frac{2}{\cos z-\sin z+e^{-z}} .
$$

- Classification of consecutive patterns into equivalence classes. (weak) Wilf-equivalence:
$\sigma \stackrel{w}{\sim} \tau \Longleftrightarrow\left|\mathcal{S}_{n}(\sigma)\right|=\left|\mathcal{S}_{n}(\tau)\right| \forall n \Longleftrightarrow P_{\sigma}(0, z)=P_{\tau}(0, z)$
strong Wilf-equivalence: $\sigma \stackrel{\stackrel{s}{\sim} \tau \Longleftrightarrow P_{\sigma}(u, z)=P_{\tau}(u, z), ~(0, z)}{ }$
Example: $1342 \stackrel{s}{\sim} 1432$.
- Asymptotic behavior and comparison of $\left|\mathcal{S}_{n}(\sigma)\right|$ for different patterns.
Example: $\left|\mathcal{S}_{n}(132)\right|<\left|\mathcal{S}_{n}(123)\right|$ for $n \geq 4$.

Consecutive patterns

Patterns of small length

Length 3: two strong Wilf-equivalence classes
$123 \stackrel{s}{\sim} 321$
$132 \stackrel{s}{\sim} 231 \stackrel{s}{\sim} 312 \stackrel{s}{\sim} 213$

Consecutive patterns

Patterns of small length

Length 3: two strong Wilf-equivalence classes

```
123 ~}~32
132~\stackrel{s}{~}231 ~}~312~ ~ 213
```

Length 4: seven strong Wilf-equivalence classes

```
1234 \stackrel{s}{~}}432
2413 ~}~314
2143 ~}~341
1324 \stackrel{s}{~}}423
1423 \stackrel{s}{~}3241 \stackrel{s}{~}4132 \stackrel{s}{~}2314
```



```
1243 ~}~ 3421 ~ ~ 4312 ~ s 2134
```

All $\stackrel{s}{\sim}$ follow from reversal and complementation except for $\stackrel{s}{\sim}$.

Length 3 and 4

Patterns of small length

Length 3: two strong Wilf-equivalence classes

```
123 \stackrel{s}{~}}32
132~~}~231~ ~ 312 ~ s 213
```

Length 4: seven strong Wilf-equivalence classes

```
1234 \stackrel{s}{~}}432
2413\stackrel{s}{~}}314
2143 ~}~341
1324 \stackrel{s}{~}}423
1423 \stackrel{s}{~}3241 ~
```



```
1243 ~}~ 3421 ~ ~ 4312 ~ ~ 2134
```

All $\stackrel{s}{\sim}$ follow from reversal and complementation except for $\stackrel{s}{\sim}$.

Consecutive patterns
Exact enumeration 0000000

Are $\stackrel{\sim}{\sim}$ and $\stackrel{s}{\sim}$ the same?

Conjecture (Nakamura '11)

$$
\sigma \stackrel{w}{\sim} \tau \Longleftrightarrow \sigma \stackrel{\stackrel{s}{\sim}}{\sim}
$$

Consecutive patterns

Are $\stackrel{w}{\sim}$ and $\stackrel{s}{\sim}$ the same?

Conjecture (Nakamura '11)

$$
\sigma \stackrel{w}{\sim} \tau \Longleftrightarrow \sigma \stackrel{s}{\sim} \tau
$$

E.-Noy '01,'12, Nakamura '11: Classification of consecutive patterns of length up to 6 into Wilf-equivalence classes.
$\stackrel{\sim}{\sim}$ and $\stackrel{s}{\sim}$ coincide for patterns of length ≤ 6.

Are $\stackrel{\sim}{\sim}$ and $\stackrel{s}{\sim}$ the same?

Conjecture (Nakamura '11)

$$
\sigma \stackrel{w}{\sim} \tau \Longleftrightarrow \sigma \stackrel{s}{\sim} \tau
$$

E.-Noy '01,'12, Nakamura '11: Classification of consecutive patterns of length up to 6 into Wilf-equivalence classes.
$\stackrel{w}{\sim}$ and $\stackrel{s}{\sim}$ coincide for patterns of length ≤ 6.
We don't know the number of classes for

n	\# of classes
3	2
4	7
5	25
6	92

Are $\stackrel{\sim}{\sim}$ and $\stackrel{s}{\sim}$ the same?

Conjecture (Nakamura '11)

$$
\sigma \stackrel{w}{\sim} \tau \Longleftrightarrow \sigma \stackrel{s}{\sim} \tau
$$

E.-Noy '01,'12, Nakamura '11: Classification of consecutive patterns of length up to 6 into Wilf-equivalence classes.
$\stackrel{\sim}{\sim}$ and $\stackrel{s}{\sim}$ coincide for patterns of length ≤ 6.
We don't know the number of classes for

n	\# of classes
3	2
4	7
5	25
6	92

There are analogues of this conjecture in other settings, such as containment of words under the generalized factor order or patterns in inversion sequences.

Finding formulas for $P_{\sigma}(u, z)$

One method that we use to compute $P_{\sigma}(u, z)$ is an adaptation of the cluster method of Goulden and Jackson, based on inclusion-exclusion.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Finding formulas for $P_{\sigma}(u, z)$

One method that we use to compute $P_{\sigma}(u, z)$ is an adaptation of the cluster method of Goulden and Jackson, based on inclusion-exclusion.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Example: $14 \overline{2536} 879$ is a 3-cluster w.r.t. 1324.

Finding formulas for $P_{\sigma}(u, z)$

One method that we use to compute $P_{\sigma}(u, z)$ is an adaptation of the cluster method of Goulden and Jackson, based on inclusion-exclusion.

A k-cluster with respect to $\sigma \in \mathcal{S}_{m}$ is a permutation filled with k marked occurrences of σ that overlap with each other.

Example: $14 \overline{2536} 879$ is a 3-cluster w.r.t. 1324.
Define the cluster generating function

$$
C_{\sigma}(u, z)=\sum_{n, k} \#\{k \text {-clusters of length } n \text { w.r.t. } \sigma\} u^{k} \frac{z^{n}}{n!}
$$

The cluster method

The cluster method

The cluster method is a formula relating $P_{\sigma}(u, z)$ and $C_{\sigma}(u, z)$. It reduces the computation of $P_{\sigma}(u, z)$ to the enumeration of clusters, which is often simpler.

The cluster method

The cluster method

The cluster method is a formula relating $P_{\sigma}(u, z)$ and $C_{\sigma}(u, z)$. It reduces the computation of $P_{\sigma}(u, z)$ to the enumeration of clusters, which is often simpler.

Theorem (Goulden-Jackson '79, adapted)

$$
P_{\sigma}(u, z)=\frac{1}{1-z-C_{\sigma}(u-1, z)}
$$

The cluster method

The cluster method is a formula relating $P_{\sigma}(u, z)$ and $C_{\sigma}(u, z)$. It reduces the computation of $P_{\sigma}(u, z)$ to the enumeration of clusters, which is often simpler.

Theorem (Goulden-Jackson '79, adapted)

$$
P_{\sigma}(u, z)=\frac{1}{1-z-C_{\sigma}(u-1, z)}
$$

It can be proved easily using inclusion-exclusion.

The cluster method

The cluster method is a formula relating $P_{\sigma}(u, z)$ and $C_{\sigma}(u, z)$. It reduces the computation of $P_{\sigma}(u, z)$ to the enumeration of clusters, which is often simpler.

Theorem (Goulden-Jackson '79, adapted)

$$
P_{\sigma}(u, z)=\frac{1}{1-z-C_{\sigma}(u-1, z)} \stackrel{\text { def }}{=} \frac{1}{\omega_{\sigma}(u, z)} .
$$

It can be proved easily using inclusion-exclusion.

Linear extensions

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2}} \bar{\pi}_{3} \pi_{4} \pi_{5} \pi_{6} \underline{\pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}$ is a cluster w.r.t. $\sigma=14253$ I

$$
\begin{aligned}
& \pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
& \pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
& \pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Linear extensions

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2}} \overline{\pi_{3} \pi_{4} \pi_{5}} \pi_{6} \pi_{7} \pi_{8} \pi_{9} \pi_{10} \pi_{11}$ is a cluster w.r.t. $\sigma=14253$ I

$$
\begin{aligned}
& \pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
& \pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
& \pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Linear extensions

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \underline{\pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}}$ is a cluster w.r.t. $\sigma=14253$ I

$$
\begin{aligned}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{aligned}
$$

Linear extensions

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \underline{\pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}}$ is a cluster w.r.t. $\sigma=14253$ I

$$
\begin{gathered}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10}
\end{gathered}
$$

$$
\Uparrow
$$

π is a linear extension of the poset given by these relations (called a cluster poset)

Clusters as linear extensions of posets

$\underline{\pi_{1} \pi_{2} \pi_{3} \pi_{4} \pi_{5} \pi_{6} \pi_{7}} \pi_{8} \pi_{9} \pi_{10} \pi_{11}$ is a cluster w.r.t. $\sigma=14253$ §

$$
\begin{gathered}
\pi_{1}<\pi_{3}<\pi_{5}<\pi_{2}<\pi_{4} \\
\pi_{3}<\pi_{5}<\pi_{7}<\pi_{4}<\pi_{6} \\
\pi_{7}<\pi_{9}<\pi_{11}<\pi_{8}<\pi_{10} \\
\hat{\rrbracket}
\end{gathered}
$$

π is a linear extension of the poset given by these relations (called a cluster poset)

Ex: $16 \overline{28311495107}$

Enumerative results

Monotone and related patterns

Theorem (E.-Noy '01)

For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0 .
$$

Enumerative results

Monotone and related patterns

Theorem (E.-Noy '01)

For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0
$$

When $u=0$, we have

$$
\omega_{12 \ldots m}(0, z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)
$$

(David-Barton '62)

Monotone and related patterns

Theorem (E.-Noy '01)

For $\sigma=12 \ldots m, \omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(m-1)}+(1-u)\left(\omega^{(m-2)}+\cdots+\omega^{\prime}+\omega\right)=0 .
$$

When $u=0$, we have

$$
\omega_{12 \ldots m}(0, z)=\sum_{j \geq 0}\left(\frac{z^{j m}}{(j m)!}-\frac{z^{j m+1}}{(j m+1)!}\right)
$$

(David-Barton '62)

More generally, we get similar differential equations for any σ for which all its cluster posets are chains, such as

$$
\sigma=12 \ldots(s-1)(s+1) s(s+2)(s+3) \ldots m .
$$

Enumerative results

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Enumerative results

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Enumerative results

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Example: $\quad \omega_{132}(u, z)=1-\int_{0}^{z} e^{(u-1) t^{2} / 2} d t$.

Non-overlapping patterns

$\sigma \in \mathcal{S}_{m}$ is non-overlapping if two occurrences of σ can't overlap in more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.-Noy '01)

Let $\sigma \in \mathcal{S}_{m}$ be non-overlapping with $\sigma_{1}=1, \sigma_{m}=b$. Then $\omega_{\sigma}(u, z)$ is the solution of

$$
\omega^{(b)}+(1-u) \frac{z^{m-b}}{(m-b)!} \omega^{\prime}=0
$$

Example: $\quad \omega_{132}(u, z)=1-\int_{0}^{z} e^{(u-1) t^{2} / 2} d t$.
Similar arguments give differential equations for $\sigma=12534$ and $\sigma=13254$, which aren't non-overlapping.

Enumerative results

The pattern 1324

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin '11)

For $\sigma=1324, \omega_{\sigma}(u, z)$ is the solution of

$$
\begin{array}{r}
z \omega^{(5)}-((u-1) z-3) \omega^{(4)}-3(u-1)(2 z+1) \omega^{(3)}+(u-1)((4 u-5) z-6) \omega^{\prime \prime} \\
+(u-1)(8(u-1) z-3) \omega^{\prime}+4(u-1)^{2} z \omega=0
\end{array}
$$

The pattern 1324

Theorem (E.-Noy, Liese-Remmel, Dotsenko-Khoroshkin '11)

For $\sigma=1324, \omega_{\sigma}(u, z)$ is the solution of

$$
\begin{gathered}
z \omega^{(5)}-((u-1) z-3) \omega^{(4)}-3(u-1)(2 z+1) \omega^{(3)}+(u-1)((4 u-5) z-6) \omega^{\prime \prime} \\
+(u-1)(8(u-1) z-3) \omega^{\prime}+4(u-1)^{2} z \omega=0
\end{gathered}
$$

The construction generalizes to patterns of the form

$$
\sigma=134 \ldots(s+1) 2(s+2)(s+3) \ldots m .
$$

Other patterns of length 4

For the remaining cases, 1423,2143 and 2413 , we have no closed form or differential equation for $\omega_{\sigma}(u, z)$.

Other patterns of length 4

For the remaining cases, 1423,2143 and 2413 , we have no closed form or differential equation for $\omega_{\sigma}(u, z)$.

Theorem (Beaton-Conway-Guttmann '18, conjectured by E.-Noy '11)

$\omega_{1423}(0, z)$ is not D-finite (that is, it does not satisfy a linear differential equation with polynomial coefficients).

Other patterns of length 4

For the remaining cases, 1423,2143 and 2413 , we have no closed form or differential equation for $\omega_{\sigma}(u, z)$.

Theorem (Beaton-Conway-Guttmann '18, conjectured by E.-Noy '11)

$\omega_{1423}(0, z)$ is not D-finite (that is, it does not satisfy a linear differential equation with polynomial coefficients).

There is an analogous question in the case of "classical" (i.e. non-consecutive) patterns.
Garrabrant-Pak '15 show that some generating functions for permutations avoiding sets of classical patterns are not D-finite.

Asymptotic behavior

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

Asymptotic behavior

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

$$
\rho_{\sigma}:=\lim _{n \rightarrow \infty}\left(\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}\right)^{1 / n} \quad \text { exists. }
$$

This limit is known only for some patterns.

Theorem (Ehrenborg-Kitaev-Perry '11)

For every σ,

$$
\frac{\left|\mathcal{S}_{n}(\sigma)\right|}{n!}=\gamma_{\sigma} \rho_{\sigma}^{n}+O\left(\delta^{n}\right)
$$

for some constants γ_{σ} and $\delta<\rho_{\sigma}$.
The proof uses methods from spectral theory.

The most and the least avoided patterns

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

The most and the least avoided patterns

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12)

For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right|
$$

for all $n \geq n_{0}$.

The most and the least avoided patterns

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12)

For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right|
$$

for all $n \geq n_{0}$.

This is equivalent to ρ_{σ} being largest for $\sigma=12 \ldots m$.

The most avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ largest?

Theorem (E. '12)

For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\left|\mathcal{S}_{n}(\sigma)\right| \leq\left|\mathcal{S}_{n}(12 \ldots m)\right|
$$

for all $n \geq n_{0}$.

This is equivalent to ρ_{σ} being largest for $\sigma=12 \ldots m$.
Interestingly, the analogous result for classical (i.e. non-consecutive) patterns is false; it is not known what the most avoided pattern is.

The most and the least avoided patterns

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

The most and the least avoided patterns

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\left|\mathcal{S}_{n}(123 \ldots(m-2) m(m-1))\right| \leq\left|\mathcal{S}_{n}(\sigma)\right|
$$

for all $n \geq n_{0}$.

The least avoided pattern

For what pattern $\sigma \in \mathcal{S}_{m}$ is $\left|\mathcal{S}_{n}(\sigma)\right|$ smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every $\sigma \in \mathcal{S}_{m}$ there exists n_{0} such that

$$
\left|\mathcal{S}_{n}(123 \ldots(m-2) m(m-1))\right| \leq\left|\mathcal{S}_{n}(\sigma)\right|
$$

for all $n \geq n_{0}$.

Again, there is no analogous known result for classical (i.e. non-consecutive) patterns.

Consecutive patterns in inversion sequences (joint with Juan Auli)

Inversion sequences

An inversion sequence of length n is an integer sequence $e=e_{1} e_{2} \cdots e_{n}$ such that $0 \leq e_{i}<i$.
$\mathbf{I}_{n}=$ set of inversion sequences of length n.

Inversion sequences

An inversion sequence of length n is an integer sequence $e=e_{1} e_{2} \cdots e_{n}$ such that $0 \leq e_{i}<i$.
$\mathbf{I}_{n}=$ set of inversion sequences of length n.
Example. $e=00213 \in \mathbf{I}_{5}$.

Inversion sequences

An inversion sequence of length n is an integer sequence $e=e_{1} e_{2} \cdots e_{n}$ such that $0 \leq e_{i}<i$.
$\mathbf{I}_{n}=$ set of inversion sequences of length n.
Example. $e=00213 \in \mathbf{I}_{5}$.

Permutations can be encoded as inversion sequences via the bijection $\Theta: \mathcal{S}_{n} \rightarrow \mathbf{I}_{n}$, defined by $\Theta(\pi)=e_{1} e_{2} \cdots e_{n}$ where

$$
e_{j}=\mid\left\{i: i<j \text { and } \pi_{i}>\pi_{j}\right\} \mid .
$$

For instance, $\Theta(35142)=00213$.

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern $p=p_{1} p_{2} \cdots p_{l}$ in an inversion sequence $e \in \mathbf{I}_{n}$ is a subsequence of adjacent entries $e_{i} e_{i+1} \cdots e_{i+l-1}$ in the same relative order as p.

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern $p=p_{1} p_{2} \cdots p_{l}$ in an inversion sequence $e \in \mathbf{I}_{n}$ is a subsequence of adjacent entries $e_{i} e_{i+1} \cdots e_{i+l-1}$ in the same relative order as p.

Example. $e=0023013$ contains 001 and 012, but it avoids 000 and 010 .

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern $p=p_{1} p_{2} \cdots p_{l}$ in an inversion sequence $e \in \mathbf{I}_{n}$ is a subsequence of adjacent entries $e_{i} e_{i+1} \cdots e_{i+l-1}$ in the same relative order as p.

Example. $e=0023013$ contains 001 and 012, but it avoids 000 and 010 .

Let $\mathbf{I}_{n}(p)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.p\right\}$.

Enumerative results

Avoiding consecutive patterns of length 3

We have formulas or recurrences for the numbers $\left|\mathbf{I}_{n}(p)\right|$ for all 13 patterns p of length 3 .

Proposition (Auli-E. '19)

$$
\left|\mathbf{I}_{n}(000)\right|=\frac{(n+1)!-d_{n+1}}{n}
$$

where d_{n} is the number of derangements in \mathcal{S}_{n}.

Enumerative results

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(012,0023013)=\{2,5\}$.

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(012,0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \stackrel{w}{\sim} p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

Enumerative results

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(012,0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \stackrel{w}{\sim} p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=k\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=k\right\}\right| \quad \forall n, k
$$

Enumerative results

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(012,0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \stackrel{w}{\sim} p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=k\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=k\right\}\right| \quad \forall n, k
$$

- super-strongly Wilf equivalent, denoted $p \stackrel{s s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right| \quad \forall n, S \subseteq[n] .
$$

Enumerative results

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(012,0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \stackrel{w}{\sim} p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=k\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=k\right\}\right| \quad \forall n, k
$$

- super-strongly Wilf equivalent, denoted $p \stackrel{s s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right| \quad \forall n, S \subseteq[n] .
$$

Note that $p \stackrel{s s}{\sim} p^{\prime} \Rightarrow p \stackrel{s}{\sim} p^{\prime} \Rightarrow p \stackrel{w}{\sim} p^{\prime}$.

Equivalences between patterns of length 3

Theorem (Auli-E. '19)

The only equivalence for patterns of length 3 is

$$
100 \stackrel{s s}{\sim} 110 .
$$

Equivalences between patterns of length 3

Theorem (Auli-E. '19)

The only equivalence for patterns of length 3 is

$$
100 \stackrel{s s}{\sim} 110
$$

Sometimes, inversion sequences provide the right setting to study pattern avoidance in permutations. Here is an example:

Corollary (conjectured by Baxter-Pudwell '12, proved non-bijectively by Baxter-Shattuck and Kasraoui)
The vincular permutation patterns 124-3 and 421-3 are Wilf equivalent.

Equivalences between patterns of length 3

Theorem (Auli-E. '19)

The only equivalence for patterns of length 3 is

$$
100 \stackrel{s s}{\sim} 110 .
$$

Sometimes, inversion sequences provide the right setting to study pattern avoidance in permutations. Here is an example:

Corollary (conjectured by Baxter-Pudwell '12, proved non-bijectively by Baxter-Shattuck and Kasraoui)
The vincular permutation patterns 124-3 and 421-3 are Wilf equivalent.

We can prove this with a sequence of bijections:

$$
\mathcal{S}_{n}(124-3) \leftrightarrow \mathbf{I}_{n}(100) \cap \mathbf{I}_{n}(210) \leftrightarrow \mathbf{I}_{n}(110) \cap \mathbf{I}_{n}(210) \leftrightarrow \mathcal{S}_{n}(421-3) .
$$

Enumerative results

Patterns of length 4

Theorem (Auli-E.)

Here are all equivalences between consecutive patterns of length 4:

```
- 0102 ss 0112
- 0021 \stackrel{ss }{~}0121
- 1002 \stackrel{Ss}{~}1012 ~ss 1102
- \(0100 \stackrel{\text { ss }}{\sim} 0110\)
- \(2013 \stackrel{\text { ss }}{\sim} 2103\)
- \(1200 \stackrel{\text { ss }}{\sim} 1210 \stackrel{\text { ss }}{\sim} 1220\)
- \(0211 \stackrel{\text { ss }}{\sim} 0221\)
```

- $1000 \stackrel{\text { ss }}{\sim} 1110$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{\text { ss }}{\sim} 2210$
- $2001 \stackrel{\text { ss }}{\sim} 2011 \stackrel{\text { ss }}{\sim} 2101 \stackrel{\text { ss }}{\sim} 2201$
- $2012 \stackrel{\text { ss }}{\sim} 2102$
- $2010 \stackrel{5 s}{\sim} 2110 \stackrel{5 s}{\sim} 2120$
- $3012 \stackrel{\text { ss }}{\sim} 3102$

Enumerative results

Patterns of length 4

Theorem (Auli-E.)

Here are all equivalences between consecutive patterns of length 4:

```
- 0102 ss 0112
- 0021 \stackrel{ss }{~}0121
- 1002 \stackrel{ss }{~}1012 \stackrel{ss}{~}1102
- 0100 ss }011
- 2013 ss }210
- 1200 \stackrel{ss}{~}1210 \stackrel{ss}{~}1220
- 0211 \stackrel{ss }{~}0221
- \(2013 \stackrel{\text { ss }}{\sim} 2103\)
- \(0211 \stackrel{\text { ss }}{\sim} 0221\)
```

- $1000 \stackrel{\text { ss }}{\sim} 1110$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{5 s}{\sim} 2210$
- $2001 \stackrel{\text { ss }}{\sim} 2011 \stackrel{\text { ss }}{\sim} 2101 \stackrel{\text { ss }}{\sim} 2201$
- $2012 \stackrel{\text { ss }}{\sim} 2102$
- $2010 \stackrel{5 s}{\sim} 2110 \stackrel{5 s}{\sim} 2120$
- $3012 \stackrel{\text { ss }}{\sim} 3102$

Conjecture. If p and p^{\prime} are consecutive patterns of length m in inversion sequences, then

$$
p \stackrel{w}{\sim} p^{\prime} \Longleftrightarrow p \stackrel{s}{\sim} p^{\prime}
$$

Enumerative results

Patterns of length 4

Theorem (Auli-E.)

Here are all equivalences between consecutive patterns of length 4:

```
- 0102 ss 0112
- 0021 \stackrel{ss }{~}0121
- 1002 \stackrel{ss }{~}1012 \stackrel{ss}{~}1102
- 0100 \stackrel{ss}{~}0110
- 2013 ss }210
- 1200 \stackrel{ss}{~}1210 \stackrel{ss}{~}1220
- 0211 \stackrel{Ss}{~}0221
- \(2013 \stackrel{\text { ss }}{\sim} 2103\)
- \(0211 \stackrel{\text { ss }}{\sim} 0221\)
```

- $1000 \stackrel{\text { ss }}{\sim} 1110$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{5 s}{\sim} 2210$
- $2001 \stackrel{\text { ss }}{\sim} 2011 \stackrel{\text { ss }}{\sim} 2101 \stackrel{\text { ss }}{\sim} 2201$
- $2012 \stackrel{\text { ss }}{\sim} 2102$
- $2010 \stackrel{5 s}{\sim} 2110 \stackrel{5 s}{\sim} 2120$
- $3012 \stackrel{\text { ss }}{\sim} 3102$

Conjecture. If p and p^{\prime} are consecutive patterns of length m in inversion sequences, then

$$
p \stackrel{\sim}{\sim} p^{\prime} \Longleftrightarrow p \stackrel{s}{\sim} p^{\prime} \stackrel{? ?}{\Longleftrightarrow} p \stackrel{s s}{\sim} p^{\prime} \text { (probably not) }
$$

Consecutive patterns in dynamical systems

Application: consecutive patterns in dynamical systems

Deterministic or random?

Two sequences of numbers in $[0,1]$:
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, $.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, \ldots$
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659, $.1195, .5742, .1507, .5534, .0828, .3957, .1886, .0534, \ldots$

Which one is random? Which one is deterministic?

Application: consecutive patterns in dynamical systems

Deterministic or random?

Two sequences of numbers in $[0,1]$:
.6416, .9198, .2951, . $8320, .5590, .9861, .0550, .2078, .6584, .8996$, $.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, \ldots$
.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659, $.1195, .5742, .1507, .5534, .0828, .3957, .1886, .0534, \ldots$

Which one is random? Which one is deterministic?
The first one is deterministic: taking $f(x)=4 x(1-x)$, we have $f(.6146)=.9198$, $f(.9198)=.2951$, $f(.2951)=.8320$,

Allowed and forbidden patterns of maps

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x) .
$$

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \rightarrow X$. For each $x \in X$ and $n \geq 1$, consider the sequence

$$
x, f(x), f^{2}(x), \ldots, f^{n-1}(x)
$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed pattern of f.

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

Allowed and forbidden patterns of maps

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence 0.8,

Allowed and forbidden patterns of maps

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence 0.8, 0.64,

Allowed and forbidden patterns of maps

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216$,

Allowed and forbidden patterns of maps

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216,0.2890$

Example

$$
\begin{aligned}
f:[0,1] & \rightarrow[0,1] \\
x & \mapsto 4 x(1-x) .
\end{aligned}
$$

For $x=0.8$ and $n=4$, the sequence $0.8,0.64,0.9216,0.2890$
determines the permutation 3241, so it is an allowed pattern.

Allowed and forbidden patterns

Allow $(f)=$ set of allowed patterns of f.

Allowed and forbidden patterns of maps

Allowed and forbidden patterns

Allow $(f)=$ set of allowed patterns of f.

Allow (f) is closed under consecutive pattern containment.
E.g., if $4156273 \in \operatorname{Allow}(f)$, then $2314 \in \operatorname{Allow}(f)$.

Allowed and forbidden patterns

$$
\text { Allow }(f)=\text { set of allowed patterns of } f \text {. }
$$

Allow (f) is closed under consecutive pattern containment.
E.g., if $4156273 \in \operatorname{Allow}(f)$, then $2314 \in \operatorname{Allow}(f)$.

Thus, Allow (f) can be characterized by avoidance of a (possibly infinite) set of consecutive patterns.

The permutations not in Allow (f) are called forbidden patterns of f.

Allowed and forbidden patterns of maps

Example: $f(x)=4 x(1-x)$

Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of f.

Allowed and forbidden patterns of maps

Example: $f(x)=4 x(1-x)$

Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of f.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}$
anything containing 321

Allowed and forbidden patterns of maps

Example: $f(x)=4 x(1-x)$

Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of f.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}, \underbrace{1423,2134,2143,3142,4231, \ldots}$
anything containing 321 basic: not containing smaller forbidden patterns

Allowed and forbidden patterns of maps

Example: $f(x)=4 x(1-x)$

Taking different $x \in[0,1]$, the patterns $123,132,231,213,312$ are realized. However, 321 is a forbidden pattern of f.

Also forbidden: $\underbrace{1432,2431,3214, \ldots}, \underbrace{1423,2134,2143,3142,4231, \ldots}$
anything containing 321 basic: not containing smaller forbidden patterns
Theorem (E.-Liu '11): $f(x)=4 x(1-x)$ on the unit interval has infinitely many basic forbidden patterns.

Allowed and forbidden patterns of maps

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,

Allowed and forbidden patterns of maps

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,
- $\lim _{n \rightarrow \infty} \mid$ Allow $\left._{n}(f)\right|^{1 / n}$ exists, and its logarithm equals the topological entropy of f.

Forbidden patterns

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,
- $\lim _{n \rightarrow \infty} \mid$ Allow $\left._{n}(f)\right|^{1 / n}$ exists, and its logarithm equals the topological entropy of f.

Provides a combinatorial way to compute the topological entropy, which is a measure of the complexity of the dynamical system.

Allowed and forbidden patterns of maps

Deterministic vs. random sequences

Back to the original sequence:
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, $.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, \ldots$

We see that the pattern 321 is missing from it. This is because $x_{i+1}=f\left(x_{i}\right)$ with $f(x)=4 x(1-x)$.

Deterministic vs. random sequences

Back to the original sequence:
.6416, . $9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996$, $.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, \ldots$

We see that the pattern 321 is missing from it. This is because $x_{i+1}=f\left(x_{i}\right)$ with $f(x)=4 x(1-x)$.

If it was a random sequence, any pattern would eventually appear.

Allowed and forbidden patterns of maps

Some questions

- How are properties of Allow (f) related to properties of f ?

Allowed and forbidden patterns of maps

Some questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?

Allowed and forbidden patterns of maps

Some questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?

Some questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.

This has been done only for certain families such as shifts, β-shifts, and signed shifts.

Some questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.

This has been done only for certain families such as shifts, β-shifts, and signed shifts.

- What sets of permutations are of the form $\operatorname{Allow}(f)$ for some f ?

Some questions

- How are properties of Allow (f) related to properties of f ? In particular,
- when is the set of basic forbidden patterns of f finite?
- what is the length of the shortest forbidden pattern of f ?
- Enumerate or characterize $\operatorname{Allow}(f)$ for some families of maps.

This has been done only for certain families such as shifts, β-shifts, and signed shifts.

- What sets of permutations are of the form $\operatorname{Allow}(f)$ for some f ?
- Design pattern-based tests to distinguish random sequences from deterministic ones.

Thank you

