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De�nitions

Consecutive patterns

π = π1π2 . . . πn ∈ Sn, σ = σ1σ2 . . . σm ∈ Sm.

De�nition. An (consecutive) occurrence of σ in π is a subsequence

of adjacent entries πiπi+1 . . . πi+m−1 in the same relative order as

σ1 . . . σm.

In this talk, �occurrence� will mean �consecutive occurrence�.

Examples:

π = 42531 has an occurrence of σ = 132.

π = 15243 has two occurrences of σ = 132 (namely 152 and 243).

De�nition. We say that π contains σ (as a consecutive pattern) if

π has an occurrence of σ. Otherwise, π avoids σ.

Let Sn(σ) = {π ∈ Sn : π avoids σ}.

Example: 25134 avoids 132.
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De�nitions

Consecutive patterns in disguise

Occurrences of 21 are descents.

The number of permutations in Sn with a given number of

descents is an Eulerian number, dating back to 1755.

Occurrences of 132 or 231 are peaks: πi < πi+1 > πi+2.

Peaks play a role in algebraic combinatorics.

Permutations avoiding 123 and 321 are called alternating

permutations, studied by André in the 19th century:

π1 < π2 > π3 < π4 > · · · or π1 > π2 < π3 > π4 < · · ·
They are counted by the tangent and secant numbers.

Occurrences of 12 . . .m are called increasing runs.

Disregarding these disguised appearances, the systematic study of

consecutive patterns in permutations started about 20 years ago.
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De�nitions

Generating functions

For a �xed pattern σ, de�ne the generating function

Pσ(u, z) =
∑
n≥0

∑
π∈Sn

u#{occurrences of σ in π} z
n

n!
.

Then Pσ(0, z) =
∑
n≥0
|Sn(σ)| z

n

n!
.

Example:

P21(0, z) = 1 + z +
z2

2
+

z3

6
+ · · · = ez

P21(u, z) = 1 + z + (1 + u)
z2

2
+ (u2 + 4u + 1)

z3

6
+ . . .

=
1− u

e(u−1)z − u
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De�nitions

Some questions about consecutive patterns

Exact enumeration: �nd formulas for Pσ(u, z) or Pσ(0, z).

Example: P1234(0, z) =
2

cos z − sin z + e−z
.

Classi�cation of consecutive patterns into equivalence classes.

(weak) Wilf-equivalence:

σ
w∼ τ ⇐⇒ |Sn(σ)| = |Sn(τ)| ∀n ⇐⇒ Pσ(0, z) = Pτ (0, z)

strong Wilf-equivalence: σ
s∼ τ ⇐⇒ Pσ(u, z) = Pτ (u, z)

Example: 1342
s∼ 1432.

Asymptotic behavior and comparison of |Sn(σ)| for di�erent
patterns.

Example: |Sn(132)| < |Sn(123)| for n ≥ 4.
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Length 3 and 4

Patterns of small length

Length 3: two strong Wilf-equivalence classes

123
s∼ 321

132
s∼ 231

s∼ 312
s∼ 213

Length 4: seven strong Wilf-equivalence classes
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Length 3 and 4

Are
w∼ and

s∼ the same?

Conjecture (Nakamura '11)

σ
w∼ τ ⇐⇒ σ

s∼ τ

E.�Noy '01,'12, Nakamura '11: Classi�cation

of consecutive patterns of length up to 6 into

Wilf-equivalence classes.
w∼ and

s∼ coincide for patterns of length ≤ 6.

We don't know the number of classes for

length > 7.

n # of classes

3 2

4 7

5 25

6 92

There are analogues of this conjecture in other settings, such as

containment of words under the generalized factor order or patterns

in inversion sequences.
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The cluster method

Finding formulas for Pσ(u, z)

One method that we use to compute Pσ(u, z) is an adaptation of

the cluster method of Goulden and Jackson, based on

inclusion-exclusion.

A k-cluster with respect to σ ∈ Sm is a permutation �lled with k
marked occurrences of σ that overlap with each other.

Example: 142536879 is a 3-cluster w.r.t. 1324.

De�ne the cluster generating function

Cσ(u, z) =
∑
n,k

#{k-clusters of length n w.r.t. σ} uk z
n

n!
.
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The cluster method

The cluster method

The cluster method is a formula relating Pσ(u, z) and Cσ(u, z).
It reduces the computation of Pσ(u, z) to the enumeration of

clusters, which is often simpler.

Theorem (Goulden-Jackson '79, adapted)

Pσ(u, z) =
1

1− z − Cσ(u − 1, z)

def
=

1

ωσ(u, z)
.

It can be proved easily using inclusion-exclusion.
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Linear extensions

Clusters as linear extensions of posets

π1π2π3π4π5π6π7π8π9π10π11 is a cluster w.r.t. σ = 14253

m
π1 < π3 < π5 < π2 < π4
π3 < π5 < π7 < π4 < π6
π7 < π9 < π11 < π8 < π10

m

π is a linear extension of the

poset given by these relations

(called a cluster poset)

Ex: 1 6 2 8 3 11 4 9 5 10 7

π1 = 1

π3 = 2

π5 = 3

π2 = 6 π7 = 4

π4 = 8

π6 = 11

π9 = 5

π11 = 7

π8 = 9

π10 = 10
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Enumerative results

Monotone and related patterns

Theorem (E.�Noy '01)

For σ = 12 . . .m, ωσ(u, z) is the solution of

ω(m−1) + (1− u)(ω(m−2) + · · ·+ ω′ + ω) = 0.

When u = 0, we have

ω12...m(0, z) =
∑
j≥0

(
z jm

(jm)!
− z jm+1

(jm + 1)!

)
. (David�Barton '62)

More generally, we get similar di�erential equations for any σ for

which all its cluster posets are chains, such as

σ = 12 . . . (s−1)(s+1)s(s+2)(s+3) . . .m.
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Enumerative results

Non-overlapping patterns

σ ∈ Sm is non-overlapping if two occurrences of σ can't overlap in

more than one position.

Example: 132, 1243, 1342, 21534, 34671285 are non-overlapping.

Theorem (E.�Noy '01)

Let σ ∈ Sm be non-overlapping with σ1 = 1, σm = b. Then
ωσ(u, z) is the solution of

ω(b) + (1− u)
zm−b

(m − b)!
ω′ = 0.

Example: ω132(u, z) = 1−
∫ z

0

e(u−1)t
2/2 dt.

Similar arguments give di�erential equations for σ = 12534 and

σ = 13254, which aren't non-overlapping.
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Enumerative results

The pattern 1324

Theorem (E.�Noy, Liese�Remmel, Dotsenko�Khoroshkin '11)

For σ = 1324, ωσ(u, z) is the solution of

zω(5)−((u−1)z−3)ω(4)−3(u−1)(2z+1)ω(3)+(u−1)((4u−5)z−6)ω′′

+ (u − 1)(8(u − 1)z − 3)ω′ + 4(u − 1)2zω = 0

The construction generalizes to patterns of the form

σ = 134 . . . (s + 1)2(s + 2)(s + 3) . . .m.
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Enumerative results

Other patterns of length 4

For the remaining cases, 1423, 2143 and 2413, we have no closed

form or di�erential equation for ωσ(u, z).

Theorem (Beaton�Conway�Guttmann '18, conjectured by E.�Noy

'11)

ω1423(0, z) is not D-�nite (that is, it does not satisfy a linear

di�erential equation with polynomial coe�cients).

There is an analogous question in the case of �classical� (i.e.

non-consecutive) patterns.

Garrabrant�Pak '15 show that some generating functions for

permutations avoiding sets of classical patterns are not D-�nite.
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Asymptotic behavior

Asymptotic behavior

Theorem (E. '05)

For every σ, the limit

ρσ := lim
n→∞

(
|Sn(σ)|

n!

)1/n

exists.

This limit is known only for some patterns.

Theorem (Ehrenborg�Kitaev�Perry '11)

For every σ,
|Sn(σ)|

n!
= γσρ

n
σ + O(δn),

for some constants γσ and δ < ρσ.

The proof uses methods from spectral theory.
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The most and the least avoided patterns

The most avoided pattern

For what pattern σ ∈ Sm is |Sn(σ)| largest?

Theorem (E. '12)

For every σ ∈ Sm there exists n0 such that

|Sn(σ)| ≤ |Sn(12 . . .m)|

for all n ≥ n0.

This is equivalent to ρσ being largest for σ = 12 . . .m.

Interestingly, the analogous result for classical (i.e. non-consecutive)

patterns is false; it is not known what the most avoided pattern is.
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The most and the least avoided patterns

The least avoided pattern

For what pattern σ ∈ Sm is |Sn(σ)| smallest?

Theorem (E. '12, conjectured by Nakamura '11)

For every σ ∈ Sm there exists n0 such that

|Sn(123 . . . (m−2)m(m−1))| ≤ |Sn(σ)|

for all n ≥ n0.

Again, there is no analogous known result for classical (i.e.

non-consecutive) patterns.
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Consecutive patterns in inversion sequences

(joint with Juan Auli)
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Patterns in inversion sequences

Inversion sequences

An inversion sequence of length n is an integer sequence

e = e1e2 · · · en such that 0 ≤ ei < i .

In = set of inversion sequences of length n.

Example. e = 00213 ∈ I5.

Permutations can be encoded as inversion sequences via the

bijection Θ : Sn → In, de�ned by Θ(π) = e1e2 · · · en where

ej = |{i : i < j and πi > πj}|.

For instance, Θ(35142) = 00213.
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Patterns in inversion sequences

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern p = p1p2 · · · pl in an

inversion sequence e ∈ In is a subsequence of adjacent entries

eiei+1 · · · ei+l−1 in the same relative order as p.

Example. e = 0023013 contains

001 and 012, but it avoids 000

and 010.

Let In(p) = {e ∈ In : e avoids p}.

Sergi Elizalde Consecutive patterns in permutations & inv. sequences



Consecutive patterns Exact enumeration Asymptotic behavior Inversion sequences Dynamical systems

Patterns in inversion sequences

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern p = p1p2 · · · pl in an

inversion sequence e ∈ In is a subsequence of adjacent entries

eiei+1 · · · ei+l−1 in the same relative order as p.

Example. e = 0023013 contains

001 and 012, but it avoids 000

and 010.

Let In(p) = {e ∈ In : e avoids p}.

Sergi Elizalde Consecutive patterns in permutations & inv. sequences



Consecutive patterns Exact enumeration Asymptotic behavior Inversion sequences Dynamical systems

Patterns in inversion sequences

Consecutive patterns in inversion sequences

An occurrence of the (consecutive) pattern p = p1p2 · · · pl in an

inversion sequence e ∈ In is a subsequence of adjacent entries

eiei+1 · · · ei+l−1 in the same relative order as p.

Example. e = 0023013 contains

001 and 012, but it avoids 000

and 010.

Let In(p) = {e ∈ In : e avoids p}.

Sergi Elizalde Consecutive patterns in permutations & inv. sequences



Consecutive patterns Exact enumeration Asymptotic behavior Inversion sequences Dynamical systems

Enumerative results

Avoiding consecutive patterns of length 3

We have formulas or recurrences for the numbers |In(p)| for all 13
patterns p of length 3.

Proposition (Auli�E. '19)

|In(000)| =
(n + 1)!− dn+1

n
,

where dn is the number of derangements in Sn.
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Enumerative results

Equivalences between patterns

For e ∈ In and a consecutive pattern p, let

Oc(p, e) = {i : eiei+1ei+2 is an occurence of p}.

Example. Oc(012, 0023013) = {2, 5}.

De�nition. Two consecutive patterns p and p′ are:

Wilf equivalent, denoted p
w∼ p′, if

|In(p)| =
∣∣In(p′)

∣∣ ∀n.

strongly Wilf equivalent, denoted p
s∼ p′, if

|{e ∈ In : |Oc(p, e)| = k}| =
∣∣{e ∈ In : |Oc(p′, e)| = k

}∣∣ ∀n, k .

super-strongly Wilf equivalent, denoted p
ss∼ p′, if

|{e ∈ In : Oc(p, e) = S}| =
∣∣{e ∈ In : Oc(p′, e) = S

}∣∣ ∀n,S ⊆ [n].

Note that p
ss∼ p′ ⇒ p

s∼ p′ ⇒ p
w∼ p′.
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Enumerative results

Equivalences between patterns of length 3

Theorem (Auli�E. '19)

The only equivalence for patterns of length 3 is

100
ss∼ 110.

Sometimes, inversion sequences provide the right setting to study

pattern avoidance in permutations. Here is an example:

Corollary (conjectured by Baxter�Pudwell '12, proved

non-bijectively by Baxter�Shattuck and Kasraoui)

The vincular permutation patterns 124−3 and 421−3 are Wilf

equivalent.

We can prove this with a sequence of bijections:

Sn(124−3)↔ In(100) ∩ In(210)↔ In(110) ∩ In(210)↔ Sn(421−3).
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Enumerative results

Patterns of length 4

Theorem (Auli�E.)

Here are all equivalences between consecutive patterns of length 4:

0102
ss∼ 0112

0021
ss∼ 0121

1002
ss∼ 1012

ss∼ 1102

0100
ss∼ 0110

2013
ss∼ 2103

1200
ss∼ 1210

ss∼ 1220

0211
ss∼ 0221

1000
ss∼ 1110

1001
ss∼ 1011

ss∼ 1101

2100
ss∼ 2210

2001
ss∼ 2011

ss∼ 2101
ss∼ 2201

2012
ss∼ 2102

2010
ss∼ 2110

ss∼ 2120

3012
ss∼ 3102

Conjecture. If p and p′ are consecutive patterns of length m in

inversion sequences, then

p
w∼ p′ ⇐⇒ p

s∼ p′

??⇐⇒ p
ss∼ p′ (probably not)
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Consecutive patterns in dynamical systems
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Application: consecutive patterns in dynamical systems

Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, .3957, .1886, .0534, . . .

Which one is random? Which one is deterministic?

The �rst one is deterministic: taking f (x) = 4x(1− x), we have

f (.6146) = .9198,
f (.9198) = .2951,
f (.2951) = .8320,
. . .
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Allowed and forbidden patterns of maps

Allowed patterns of a map

Let X be a linearly ordered set, f : X → X . For each x ∈ X and

n ≥ 1, consider the sequence

x , f (x), f 2(x), . . . , f n−1(x).

If there are no repetitions, the relative order of the entries

determines a permutation, called an allowed pattern of f .
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Allowed and forbidden patterns of maps

Example

f : [0, 1] → [0, 1]
x 7→ 4x(1− x).

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

For x = 0.8 and n = 4, the sequence

0.8, 0.64, 0.9216, 0.2890
determines the permutation 3241, so it is an allowed pattern.
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Allowed and forbidden patterns of maps

Allowed and forbidden patterns

Allow(f ) = set of allowed patterns of f .

Allow(f ) is closed under consecutive pattern containment.

E.g., if 4156273 ∈ Allow(f ), then 2314 ∈ Allow(f ).

Thus, Allow(f ) can be characterized by avoidance of a (possibly

in�nite) set of consecutive patterns.

The permutations not in Allow(f ) are called forbidden patterns

of f .
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Allowed and forbidden patterns of maps

Example: f (x) = 4x(1− x)

Taking di�erent x ∈ [0, 1], the patterns 123, 132, 231, 213, 312 are

realized. However, 321 is a forbidden pattern of f .

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

f (x) f (f (x))

123 132 231 213 312

Also forbidden: 1432, 2431, 3214, . . .︸ ︷︷ ︸
anything containing 321

, 1423, 2134, 2143, 3142, 4231, . . .︸ ︷︷ ︸
basic: not containing smaller forbidden patterns

Theorem (E.�Liu '11): f (x) = 4x(1− x) on the unit interval has

in�nitely many basic forbidden patterns.
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Allowed and forbidden patterns of maps

Forbidden patterns

Let I ⊂ R be a closed interval.

Theorem (Bandt�Keller�Pompe '02)

Let f : I → I be a piecewise monotone map. Then

f has forbidden patterns,

limn→∞ |Allown(f )|1/n exists, and its logarithm equals the

topological entropy of f .

Provides a combinatorial way to compute the topological entropy,

which is a measure of the complexity of the dynamical system.
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Allowed and forbidden patterns of maps

Deterministic vs. random sequences

Back to the original sequence:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, .9556, .1687, .5637, . . .

We see that the pattern 321 is missing from it. This is because

xi+1 = f (xi ) with f (x) = 4x(1− x).

If it was a random sequence, any pattern would eventually appear.
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Allowed and forbidden patterns of maps

Some questions

How are properties of Allow(f ) related to properties of f ?

In particular,

when is the set of basic forbidden patterns of f �nite?

what is the length of the shortest forbidden pattern of f ?

Enumerate or characterize Allow(f ) for some families of maps.

This has been done only for certain families such as shifts,

β-shifts, and signed shifts.

What sets of permutations are of the form Allow(f ) for

some f ?

Design pattern-based tests to distinguish random sequences

from deterministic ones.
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In particular,

when is the set of basic forbidden patterns of f �nite?

what is the length of the shortest forbidden pattern of f ?

Enumerate or characterize Allow(f ) for some families of maps.

This has been done only for certain families such as shifts,

β-shifts, and signed shifts.

What sets of permutations are of the form Allow(f ) for

some f ?

Design pattern-based tests to distinguish random sequences

from deterministic ones.
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Thank you
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