Rowmotion on 321-avoiding permutations

Sergi Elizalde
(joint work with Ben Adenbaum)
Dartmouth College
BIRS Dynamical Algebraic Combinatorics
November 2021

Rowmotion on antichains and order ideals

antichains

Rowmotion on antichains and order ideals

Rowmotion on antichains and order ideals

Rowmotion on antichains and order ideals

Rowmotion on antichains and order ideals

Rowmotion on antichains and order ideals

antichains
order ideals
order filters

Rowmotion on antichains and order ideals

antichains
order ideals
order filters

minimal
$\xrightarrow{\text { elements }}$

minimal $\xrightarrow{\text { elements }}$

Rowmotion on antichains and order ideals

antichains
order ideals
order filters

rowmotion $\downarrow \rho_{\mathcal{A}}$
$\downarrow \rho_{\mathcal{I}}$
minimal
$\xrightarrow{\text { elements }}$

rowmotion $\downarrow \rho_{\mathcal{A}}$
$\downarrow \rho_{\mathcal{I}}$
minimal
elements

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1}; equivalently, the set of intervals $\{[i, j]: 1 \leq i \leq j \leq n-1\}$ ordered by inclusion.

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1}; equivalently, the set of intervals $\{[i, j]: 1 \leq i \leq j \leq n-1\}$ ordered by inclusion.

The set of order ideals of A^{n-1} is in bijection with the set \mathcal{D}_{n} Dyck paths of semilength n.

Type A root poset and Dyck paths

Let A^{n-1} denote the positive root poset of type A_{n-1}; equivalently, the set of intervals $\{[i, j]: 1 \leq i \leq j \leq n-1\}$ ordered by inclusion.

The set of order ideals of A^{n-1} is in bijection with the set \mathcal{D}_{n} Dyck paths of semilength n.

We can view rowmotion on ideals of A^{n-1} as an operation on Dyck paths $\rho_{\mathcal{D}}: \mathcal{D}_{n} \rightarrow \mathcal{D}_{n}$.

Rowmotion on Dyck paths

antichains order ideals \equiv Dyck paths order filters

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.
$\mathcal{S}_{n}(321)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ is 321-avoiding $\}$

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.
$\mathcal{S}_{n}(321)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ is 321-avoiding $\}$
Example:

$$
\pi=241358967
$$

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.
$\mathcal{S}_{n}(321)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ is 321-avoiding $\}$
Example:

$$
\pi=241358967
$$

We say that $(i, \pi(i))$ is an excedance if $\pi(i)>i$,

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.
$\mathcal{S}_{n}(321)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ is 321-avoiding $\}$
Example:

$$
\pi=241358967
$$

We say that $(i, \pi(i))$ is an excedance if $\pi(i)>i$, a fixed point if $\pi(i)=i$,

321-avoiding permutations

A permutation $\pi=\pi(1) \pi(2) \ldots \pi(n) \in \mathcal{S}_{n}$ is 321-avoiding if there do not exist $i<j<k$ such that $\pi(i)>\pi(j)>\pi(k)$.
$\mathcal{S}_{n}(321)=\left\{\pi \in \mathcal{S}_{n}: \pi\right.$ is 321-avoiding $\}$
Example:

$$
\pi=241358967
$$

We say that $(i, \pi(i))$ is an excedance if $\pi(i)>i$, a fixed point if $\pi(i)=i$, and a deficiency if $\pi(i)<i$.

Properties of 321-avoiding permutations

Any $\pi \in \mathcal{S}_{n}(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence.

$$
\pi=241358967 \in \mathcal{S}_{n}(321)
$$

Properties of 321-avoiding permutations

Any $\pi \in \mathcal{S}_{n}(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence. We can view the set of excedances of π as an antichain in A^{n-1}.

$$
\pi=241358967 \in \mathcal{S}_{n}(321)
$$

Properties of 321-avoiding permutations

Any $\pi \in \mathcal{S}_{n}(321)$ is uniquely determined by the positions and values of its excedances, which form an increasing subsequence.

We can view the set of excedances of π as an antichain in A^{n-1}. Denote this bijection by

$$
\text { Exc : } \mathcal{S}_{n}(321) \rightarrow \mathcal{A}\left(\mathrm{A}^{n-1}\right)
$$

$$
\pi=241358967 \in \mathcal{S}_{n}(321)
$$

$$
\mathcal{A}\left(\mathrm{A}^{n-1}\right)
$$

$$
=\text { antichains of } \mathrm{A}^{n-1}
$$

$\xrightarrow{E x c}$

Rowmotion on 321-avoiding permutations

We define a rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ by

$$
\rho_{\mathcal{S}}=\mathrm{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathrm{Exc} .
$$

Rowmotion on 321-avoiding permutations

We define a rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ by

$$
\rho_{\mathcal{S}}=\mathrm{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathrm{Exc} .
$$

\downarrow Exc

Rowmotion on 321-avoiding permutations

We define a rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ by

$$
\rho_{\mathcal{S}}=\mathrm{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathrm{Exc} .
$$

\downarrow Exc

Rowmotion on 321-avoiding permutations

We define a rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ by

$$
\rho_{\mathcal{S}}=\mathrm{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathrm{Exc} .
$$

Rowmotion on 321-avoiding permutations

We define a rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ by

$$
\rho_{\mathcal{S}}=\mathrm{Exc}^{-1} \circ \rho_{\mathcal{A}} \circ \mathrm{Exc} .
$$

Rowmotion on 321-avoiding permutations

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $\operatorname{Def}(\pi):=\operatorname{Exc}\left(\pi^{-1}\right)$, then $\rho_{\mathcal{S}}$ is equivalent to inverse rowmotion of these antichains:

Rowmotion on 321-avoiding permutations

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $\operatorname{Def}(\pi):=\operatorname{Exc}\left(\pi^{-1}\right)$, then $\rho_{\mathcal{S}}$ is equivalent to inverse rowmotion of these antichains:

\downarrow Def

Rowmotion on 321-avoiding permutations

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $\operatorname{Def}(\pi):=\operatorname{Exc}\left(\pi^{-1}\right)$, then $\rho_{\mathcal{S}}$ is equivalent to inverse rowmotion of these antichains:

\downarrow Def

\downarrow Def

Rowmotion on 321-avoiding permutations

If we consider the antichains of A^{n-1} given by the deficiencies of π instead, $\operatorname{Def}(\pi):=\operatorname{Exc}\left(\pi^{-1}\right)$, then $\rho_{\mathcal{S}}$ is equivalent to inverse rowmotion of these antichains:

\downarrow Def

\downarrow Def

\downarrow Def

321-avoiding permutations and Dyck paths

Here are some bijections between $\mathcal{S}_{n}(321)$ and \mathcal{D}_{n}
(Billey-Jockush-Stanley'93, Krattenthaler'01, E.'02):

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

$$
\pi=241358967
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

$$
\pi=241358967
$$

$$
\rho_{\mathcal{S}}(\pi)=312569478
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

$$
\pi=241358967
$$

$$
\rho_{\mathcal{S}}(\pi)=312569478
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation $\rho_{\mathcal{S}}: \mathcal{S}_{n}(321) \rightarrow \mathcal{S}_{n}(321)$ can be equivalently described as

$$
\rho_{\mathcal{S}}=E_{\lrcorner}^{-1} \circ E_{\Gamma}=D_{\lrcorner}^{-1} \circ D_{r} .
$$

$$
\pi=241358967
$$

$$
\rho_{\mathcal{S}}(\pi)=312569478
$$

$$
\rho_{\mathcal{S}}^{2}(\pi)=124673589
$$

The map that sends $E_{\Gamma}(\pi)$ to $D_{\Gamma}(\pi)$ is called the Lalanne-Kreweras involution.

Homomesy of fixed points

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is homomesic under the action of ρ if its average on each orbit is constant.

Homomesy of fixed points

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is homomesic under the action of ρ if its average on each orbit is constant. It is called c-mesic if its average over each orbit is c.

Homomesy of fixed points

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is homomesic under the action of ρ if its average on each orbit is constant. It is called c-mesic if its average over each orbit is c.
For $\pi \in \mathcal{S}_{n}$, let $\mathrm{fp}(\pi)$ be its number of fixed points.

Homomesy of fixed points

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is homomesic under the action of ρ if its average on each orbit is constant. It is called c-mesic if its average over each orbit is c.
For $\pi \in \mathcal{S}_{n}$, let $\mathrm{fp}(\pi)$ be its number of fixed points.

Theorem

The statistic fp is 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

Homomesy of fixed points

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is homomesic under the action of ρ if its average on each orbit is constant. It is called c-mesic if its average over each orbit is c.
For $\pi \in \mathcal{S}_{n}$, let $\mathrm{fp}(\pi)$ be its number of fixed points.

Theorem

The statistic fp is 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

Homomesy of fixed points

Note that the statistic fp does not correspond to a natural statistic on antichains.

$$
\mathrm{fp}(\pi)=1
$$

The statistics h_{i}

Hopkins and Joseph define a family of statistics on antichains A of

$$
h_{i}(A)=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n-1} \mathbb{1}_{[i, j]}, \quad \text { where } \mathbb{1}_{x}= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

The statistics h_{i}

Hopkins and Joseph define a family of statistics on antichains A of A^{n-1} :

$$
h_{i}(A)=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n-1} \mathbb{1}_{[i, j]}, \quad \text { where } \mathbb{1}_{x}= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

In terms of the permutation $\pi \in \mathcal{S}_{n}(321)$ such that $A=\operatorname{Exc}(\pi)$, this statistic is the number of crosses in the shaded region:
 where the darker square in the corner is counted twice.

The statistics h_{i}

Hopkins and Joseph define a family of statistics on antichains A of A^{n-1} :

$$
h_{i}(A)=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n-1} \mathbb{1}_{[i, j]}, \quad \text { where } \mathbb{1}_{x}= \begin{cases}1 & \text { if } x \in A, \\ 0 & \text { if } x \notin A .\end{cases}
$$

In terms of the permutation $\pi \in \mathcal{S}_{n}(321)$ such that $A=\operatorname{Exc}(\pi)$, this statistic is the number of crosses in the shaded region:
 where the darker square in the corner is counted twice.

Theorem (Hopkins-Joseph '20)

The statistics h_{i} are 1-mesic under the action of $\rho_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$.

The statistics h_{i}

Hopkins and Joseph define a family of statistics on antichains A of A^{n-1} :

$$
h_{i}(A)=\sum_{j=1}^{i} \mathbb{1}_{[j, i]}+\sum_{j=i}^{n-1} \mathbb{1}_{[i, j]}, \quad \text { where } \mathbb{1}_{x}= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

In terms of the permutation $\pi \in \mathcal{S}_{n}(321)$ such that $A=\operatorname{Exc}(\pi)$, this statistic is the number of crosses in the shaded region:
 where the darker square in the corner is counted twice.

Theorem (Hopkins-Joseph '20)

The statistics h_{i} are 1-mesic under the action of $\rho_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$.

Corollary

The statistics h_{i} are 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

The statistics ℓ_{i}

We can define similar statistics on permutations that do not come from natural statistics on antichains.

The statistics ℓ_{i}

We can define similar statistics on permutations that do not come from natural statistics on antichains.

For $\pi \in \mathcal{S}_{n}$ and $1 \leq i \leq n$, let $\ell_{i}(\pi)$ be the number of crosses in the shaded region:

$$
\begin{aligned}
& \ell_{3}(314267958)=2
\end{aligned}
$$

The statistics ℓ_{i}

We can define similar statistics on permutations that do not come from natural statistics on antichains.

For $\pi \in \mathcal{S}_{n}$ and $1 \leq i \leq n$, let $\ell_{i}(\pi)$ be the number of crosses in the shaded region:

$$
\begin{aligned}
& \ell_{3}(314267958)=2
\end{aligned}
$$

Theorem

The statistics ℓ_{i} are 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

The statistics ℓ_{i}

Theorem

The statistics ℓ_{i} are 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

0
 $=1$

The statistics ℓ_{i}

Theorem

The statistics ℓ_{i} are 1-mesic under the action of $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

Using that h_{i} and ℓ_{i} are 1-mesic, we get another proof that fp is 1-mesic as well, since

$$
\operatorname{fp}(\pi)=\sum_{i=1}^{n} \ell_{i}(\pi)-\sum_{i=1}^{n-1} h_{i}(\pi)
$$

The sign statistic

Let $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$ be the sign of a permutation π.

The sign statistic

Let $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$ be the sign of a permutation π.

Theorem

For all $\pi \in \mathcal{S}_{n}(321)$,

$$
\operatorname{sgn}\left(\rho_{\mathcal{S}}(\pi)\right)= \begin{cases}\operatorname{sgn}(\pi) & \text { if } n \text { is odd } \\ -\operatorname{sgn}(\pi) & \text { if } n \text { is even } .\end{cases}
$$

The sign statistic

Let $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$ be the sign of a permutation π.

Theorem

For all $\pi \in \mathcal{S}_{n}(321)$,

$$
\operatorname{sgn}\left(\rho_{\mathcal{S}}(\pi)\right)= \begin{cases}\operatorname{sgn}(\pi) & \text { if } n \text { is odd } \\ -\operatorname{sgn}(\pi) & \text { if } n \text { is even }\end{cases}
$$

Example for odd n :

The sign statistic

Example for even n :

The sign statistic

Example for even n :

Corollary
For even n, the statistic sgn is 0 -mesic under $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.

The sign statistic

Example for even n :

Corollary

For even n, the statistic sgn is 0 -mesic under $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.
Simion-Schmidt '85 first proved that $\mathcal{S}_{n}(321)$ contains the same number of odd and even permutations, for even n.

The sign statistic

Example for even n :

Corollary

For even n, the statistic sgn is 0 -mesic under $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.
Simion-Schmidt '85 first proved that $\mathcal{S}_{n}(321)$ contains the same number of odd and even permutations, for even n.
Reifegerse '05 gave a bijective proof.

The sign statistic

Example for even n :

Corollary

For even n, the statistic sgn is 0 -mesic under $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.
Simion-Schmidt '85 first proved that $\mathcal{S}_{n}(321)$ contains the same number of odd and even permutations, for even n.
Reifegerse '05 gave a bijective proof.
The map $\pi \mapsto \rho_{\mathcal{S}}(\pi)$ gives a new bijective proof.

The sign statistic

Example for even n :

Corollary

For even n, the statistic sgn is 0 -mesic under $\rho_{\mathcal{S}}$ on $\mathcal{S}_{n}(321)$.
Simion-Schmidt ' 85 first proved that $\mathcal{S}_{n}(321)$ contains the same number of odd and even permutations, for even n.
Reifegerse '05 gave a bijective proof.
The map $\pi \mapsto \rho_{\mathcal{S}}(\pi)$ gives a new bijective proof.
And the map $\pi \mapsto \rho_{\mathcal{S}}\left(\pi^{-1}\right)$ gives a sign-reversing involution.

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

Theorem (Hopkins-Joseph '20)

The number of antichains in A^{n-1} fixed by $\mathrm{LK} \circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n / 2\rfloor}$.

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

Theorem (Hopkins-Joseph '20)

The number of antichains in A^{n-1} fixed by $\mathrm{LK} \circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n / 2\rfloor}$.
Simpler proof: Via the map Exc, the involution $\mathrm{LK} \circ \rho_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_{n}(321)$.

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

Theorem (Hopkins-Joseph '20)

The number of antichains in A^{n-1} fixed by $\mathrm{LK} \circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n / 2\rfloor}$.
Simpler proof: Via the map Exc, the involution $\mathrm{LK} \circ \rho_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_{n}(321)$. Thus,

$$
\begin{aligned}
& \left|\left\{A \in \mathcal{A}\left(\mathrm{~A}^{n-1}\right): \operatorname{LK} \circ \rho_{\mathcal{A}}(A)=A\right\}\right| \\
& \quad=\left|\left\{\pi \in \mathcal{S}_{n}(321): \pi=\pi^{-1}\right\}\right|
\end{aligned}
$$

321-avoiding permutations and the LK involution

Panyushev '09 defined an involution LK on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$, which is essentially equivalent to the Lalanne-Kreweras involution on \mathcal{D}_{n}.

Theorem (Hopkins-Joseph '20)

The number of antichains in A^{n-1} fixed by $\mathrm{LK} \circ \rho_{\mathcal{A}}$ equals $\binom{n}{\lfloor n / 2\rfloor}$.
Simpler proof: Via the map Exc, the involution $\mathrm{LK} \circ \rho_{\mathcal{A}}$ on $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ corresponds to the map $\pi \mapsto \pi^{-1}$ on $\mathcal{S}_{n}(321)$. Thus,

$$
\begin{aligned}
\mid\left\{A \in \mathcal{A}\left(\mathrm{~A}^{n-1}\right):\right. & \left.\operatorname{LK} \circ \rho_{\mathcal{A}}(A)=A\right\} \mid \\
& =\left|\left\{\pi \in \mathcal{S}_{n}(321): \pi=\pi^{-1}\right\}\right|=\binom{n}{\lfloor n / 2\rfloor}
\end{aligned}
$$

by a classical result of Simion-Schmidt '85.

Promotion

Recall Schützenberger's promotion on standard Young tableaux:

$$
\begin{aligned}
& T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & 9 & 10
\end{array} \xrightarrow{\text { delete }} \rightarrow \begin{array}{|l|l|l|l|l|}
10 \\
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & 9 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & & 9 \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l}
\hline & 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9
\end{array} \xrightarrow{\text { place }} 0 \begin{array}{|l|l|l|l|l}
\hline 0 & 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \xrightarrow{+1} \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 9 \\
\hline 4 & 6 & 7 & 8 & 10 \\
\hline
\end{array}=\operatorname{Pro}(T)
\end{aligned}
$$

Promotion

Recall Schützenberger's promotion on standard Young tableaux:

$$
\begin{aligned}
& T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & 9 & 10
\end{array} \xrightarrow{\text { delete } 10} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & 9 & \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & 7 & 8 \\
\hline 3 & 5 & 6 & & 9 \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 4 & & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \rightarrow \begin{array}{|l|l|l|l|l|}
\hline 1 & & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \\
& \rightarrow \begin{array}{|l|l|l|l|l|}
\hline & 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \xrightarrow{\text { place }} \boldsymbol{\rightarrow} \begin{array}{|l|l|l|l|l}
0 & 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 6 & 7 & 9 \\
\hline
\end{array} \xrightarrow{+1} \begin{array}{|l|l|l|l|l|}
\hline 1 & 2 & 3 & 5 & 9 \\
\hline 4 & 6 & 7 & 8 & 10 \\
\hline
\end{array}=\operatorname{Pro}(T)
\end{aligned}
$$

Define a rotation operation on Dyck paths:

Promotion and rotation

Via the standard bijections, promotion translates to rotation on Dyck paths and on non-crossing matchings:

Promotion and rotation

Via the standard bijections, promotion translates to rotation on Dyck paths and on non-crossing matchings:

The Armstrong-Stump-Thomas bijection

Theorem (Armstrong-Stump-Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ under rowmotion, and \mathcal{N}_{n} (equivalently, \mathcal{D}_{n}) under rotation.

The Armstrong-Stump-Thomas bijection

Theorem (Armstrong-Stump-Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ under rowmotion, and \mathcal{N}_{n} (equivalently, \mathcal{D}_{n}) under rotation.

The Armstrong-Stump-Thomas bijection

Theorem (Armstrong-Stump-Thomas '13)

There is an equivariant bijection AST between $\mathcal{A}\left(\mathrm{A}^{n-1}\right)$ under rowmotion, and \mathcal{N}_{n} (equivalently, \mathcal{D}_{n}) under rotation.

The bijection AST has a complicated description, and it is defined uniformly for all root systems.

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

$\downarrow E x c^{-1}$

35124

$$
\xrightarrow[\rightarrow]{\mathrm{RSK}} \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 4 \\
\hline 3 & 5 & \\
\hline
\end{array}
$$

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

A simpler description of AST

We can use 321-avoiding permutations to give a simple description of the AST bijection in type A :

Theorem

AST $=\psi \circ$ RSK $\circ \mathrm{Exc}^{-1}$

A simpler description of AST

A simpler description of AST

A simpler description of AST

THANK YOU!

