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Fence posets

Let β = (β1, β2, . . . , βs) with βi ≥ 1 for all i .

Definition

The fence F (β) is the poset consisting of chains of lengths
β1, β2, . . . , βs , where the ith and (i + 1)st chains share their
maximum element if i is odd, and they share their minimum
element if i is even.

F (2, 4, 1)

The ith chain is called an ascending segment if i is odd, and a
descending segment if i is even.
Let n = |F (β)| = β1 + · · ·+ βs + 1.
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Lower order ideals

A lower order ideal of a poset is a subset I satisfying that if x ∈ I
and y ≤ x , then y ∈ I .

Let L(β) be the distributive lattice of lower order ideals of F (β),
ordered by containment.
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The lattices L(β)

The lattices L(β) can be used to calculate the mutations in a
cluster algebra derived from a surface with marked points on the
boundary [Schiffler ’08 ’10, Schiffler–Thomas ’09, Musiker
–Schiffler–Williams ’11, Yurikusa ’19, Claussen ’20, Propp ’20].

Since L(β) is ranked, it has an associated rank sequence

r(β) : r0, r1, . . . , rn

where
rk = number of elements at rank k in L(β)

= number of ideals of F (β) of size k .

The corresponding rank generating functions

r(q;β) =
n∑

k=0

rkq
k

were used by Morier-Genoud and Ovsienko ’20 to define
q-analogues of rational and real numbers.
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The rank generating function: example
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r(2, 2, 1) : 1, 2, 4, 4, 3, 2, 1
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The rank generating function: a larger example

For β = (4, 3, 2, 1, 5), we have

r(β) : 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1

Definition

A sequence r0, r1, . . . , rn is unimodal if there is an index m such
that

r0 ≤ r1 ≤ . . . ≤ rm ≥ rm+1 ≥ . . . ≥ rn.

Conjecture (Morier-Genoud, Ovsienko ’20)

For all β, the sequence r(β) is unimodal.
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Other properties of sequences

Definition

A sequence r0, r1, . . . , rn is

symmetric if rk = rn−k for 0 ≤ k ≤ n,

top heavy if rk ≤ rn−k for 0 ≤ k < bn/2c,

bottom heavy if rk ≥ rn−k for 0 ≤ k < bn/2c,

top interlacing if r0 ≤ rn ≤ r1 ≤ rn−1 ≤ . . . ≤ rdn/2e,

bottom interlacing if rn ≤ r0 ≤ rn−1 ≤ r1 ≤ . . . ≤ rbn/2c.

top interlacing =⇒ top heavy and unimodal

bottom interlacing =⇒ bottom heavy and unimodal
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A refined conjecture

Conjecture (McConville, Sagan, Smyth ’21)

Let β = (β1, . . . , βs).

If s = 1 then r(β) = (1, 1, . . . , 1).

If s is even, then r(β) is bottom interlacing.

Suppose s ≥ 3 is odd and let β′ = (β2, . . . , βs−1).

If β1 > βs then r(β) is bottom interlacing.
If β1 < βs then r(β) is top interlacing.
If β1 = βs then r(β) is symmetric, bottom interlacing, or top
interlacing depending on whether r(β′) is symmetric, top
interlacing, or bottom interlacing, respectively.

Theorem (Oğuz and Ravichandran ’21)

The above conjectures are true.

The proof uses induction and algebraic manipulation, as well as a
circular version of fences.
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Our main result

In general, the sequence r(β) is not symmetric, but we will show
that it is exhibits partial symmetry.

Theorem

Suppose that β = (β1, β2, . . . , βs) where s is odd. Then, for all
k ≤ min{β1, βs} we have

rk = rn−k .

Example

For β = (4, 3, 2, 1, 5), we have

r(β) : 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1
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Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if
x ∈ U and x ≤ y , then y ∈ U.

We will use ideal to mean lower order ideal,
and filter to mean upper order ideal.

Fix β = (β1, β2, . . . , β2`+1) with an odd number of parts.

Ik(β) = ideals of F (β) of size k

Uk(β) = filters of F (β) of size k

We have |Ik(β)| = rk and |Uk(β)| = rn−k .

To give a bijective proof of our main result, we will construct a
bijection

Φ : Ik(β)→ Uk(β)

for all k ≤ min{β1, β2`+1}.
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A simpler case: gates

A gate is obtained by removing the first and last segments of a
fence, and requiring ascending segments to have length one.

For a composition δ = (δ1, δ2, . . . , δ`), define the gate

G (δ) = F (δ1, 1, δ2, 1, . . . , δ`−1, 1, δ`)
∗,

where ∗ indicates poset dual.

G (2, 3, 1)
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Restricted ideals of gates

Let D1, . . . ,D` be the descending segments of G (δ) from left to
right.

Definition

An ideal I of G (δ) is restricted if |I ∩D1| < |D1| and |I ∩D`| 6= 1.

A filter U of G (δ) is restricted if |U ∩D1| 6= 1 and |U ∩D`| < |D`|.

I =

We will describe a cardinality-preserving bijection

φ : {restricted ideals of G (δ)} → {restricted filters of G (δ)}.
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Encoding restricted ideals/filters of gates

A restricted ideal I of G (δ) can be encoded by a sequence
d1, d2, . . . , d`, where di = |I ∩ Di |.

2, 1, 2

Such sequences can be characterized as those satisfying:
1 for i ∈ [`], we have 0 ≤ di ≤ |Di |,
2 for i ∈ [2, `], if di = |Di | then di−1 > 0,
3 d1 < |D1| and d` 6= 1.

Similarly, a restricted filter U of G (δ) can be encoded by a
sequence e1, e2, . . . , e`, where ei = |U ∩ Di |, characterized by
similar conditions.
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The bijection φ for restricted ideals/filters of gates

Given a sequence d1, d2, . . . , d` encoding a restricted ideal I :

1 For each maximal block (consecutive subsequence) B of
positive integers, factor it as B = B ′T , where T is the
maximal suffix consisting of 1s.

2 For each nonempty T , exchange T with the 0 to its right.

3 For each B ′ with |B ′| ≥ 2, decrease its rightmost entry by 1
and increase its leftmost entry by 1.

The resulting sequence encodes a restricted filter φ(I ).

6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2

6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2
6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2
6, 0, 1, 1, 1, 4, 5, 0, 1, 1, 0, 3, 1, 2
6, 0, 1, 1, 1, 5, 4, 0, 1, 1, 0, 4, 1, 1
6, 0, 1, 1, 1, 5, 4, 0, 1, 1, 0, 4, 1, 1
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Given a sequence d1, d2, . . . , d` encoding a restricted ideal I :

1 For each maximal block (consecutive subsequence) B of
positive integers, factor it as B = B ′T , where T is the
maximal suffix consisting of 1s.

2 For each nonempty T , exchange T with the 0 to its right.

3 For each B ′ with |B ′| ≥ 2, decrease its rightmost entry by 1
and increase its leftmost entry by 1.

The resulting sequence encodes a restricted filter φ(I ).
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6, 0, 1, 1, 1, 5, 4, 0, 1, 1, 0, 4, 1, 1
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The general case: encoding ideals of fences

Fix β = (β1, β2, . . . , β2`+1), and let F = F (β).

Ascending segments: A1,A2, . . . ,A`+1.
Descending segments: D1,D2, . . . ,D`.

Let Ãi be obtained from Ai by removing the elements shared with
descending segments, so that each element appears in exactly one
of the Ãi or Di .

F (6, 2, 1, 2, 3, 1, 6)

Ã1

Ã3

Ã4

D1

D2

D3
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The general case: encoding ideals of fences

We encode ideals I of F as arrays of numbers

a1 a2 · · · a` a`+1

d1 d2 · · · d`

where ai = |I ∩ Ãi | and di = |I ∩ Di | for all i .

Note that |I | =
∑

i ai +
∑

i di .

Ã1

Ã3

Ã4

D1

D2

D3

I =

0 0 1 0
1 3 1
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Ã3

Ã4
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The general case: encoding ideals of fences

Such an array encodes an ideal of F if and only if:

1 for i ∈ [`+ 1] we have 0 ≤ ai ≤ |Ãi |,
2 for i ∈ [`] we have 0 ≤ di ≤ |Di |,
3 for i ∈ [`], if di = |Di | then ai = |Ãi |, and if i > 1 then

di−1 > 0 as well,

4 for i ∈ [`], if ai+1 > 0 then di > 0.

Ã1

Ã3

Ã4

D1

D2

D3

I =

0 0 1 0
1 3 1

|Ã1| = 6 |Ã2| = 0 |Ã3| = 2 |Ã4| = 6
|D1| = 3 |D2| = 3 |D3| = 2
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The general case: encoding ideals of fences

Such an array encodes an ideal of F if and only if:

1 for i ∈ [`+ 1] we have 0 ≤ ai ≤ |Ãi |,
2 for i ∈ [`] we have 0 ≤ di ≤ |Di |,
3 for i ∈ [`], if di = |Di | then ai = |Ãi |, and if i > 1 then

di−1 > 0 as well,

4 for i ∈ [`], if ai+1 > 0 then di > 0.

Similarly, we encode filters U of F as arrays of numbers

b1 b2 · · · b` b`+1

e1 e2 · · · e`

where bi = |U ∩ Ãi | and ei = |U ∩ Di | for all i .

Such arrays can be characterized by similar conditions.
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The bijection Φ for ideals/filters of fences

Next we define Φ : Ik(F )→ Uk(F ), where k ≤ min{β1, β2`+1}.

Suppose that I ∈ Ik(F ) is encoded by an array

a1 a2 · · · a` a`+1

d1 d2 · · · d`

1 For every i s.t. di = 1 and ai+1 < |Ãi+1|, let di := 0 and
ai+1 := ai+1 + 1.

2 Decompose into factors by splitting between di−1 and di for
each i ∈ [2, `] such that . Apply φ from before to each factor
to obtain a sequence . Let b := a.

3 For every i s.t. and , let and .

The resulting array encodes the filter Φ(I ).
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≤

0

≤

2

≤

6
≤

0 0 1 0
1 3 1
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Example of Φ

I =
Ã1

Ã3

Ã4

D1
D2

D3

0 0 1 0
1 3 1

Φ

Φ(I ) =

0 0 0 1
2 2 1

The inverse Φ−1 is essentially Φ conjugated with 180◦ rotation.
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Ã4

D1
D2

D3

0 0 1 0
1 3 1

Φ

Φ(I ) =

0 0 0 1
2 2 1

The inverse Φ−1 is essentially Φ conjugated with 180◦ rotation.

Sergi Elizalde Partial rank symmetry of distributive lattices for fences



Example of Φ

I =
Ã1
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Circular fences

Oğuz and Ravichandran’s proof of the (refined) unimodality of the
sequences r(β) relies on so-called circular fences.

Let β = (β1, β2, . . . , βs), where s is even.

Definition

The circular fence F (β) is obtained by identifying the leftmost and
the rightmost elements of F (β).

F (2, 1, 1, 2) F (2, 1, 1, 2)
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Rank symmetry for circular fences

Let L(β) be the distributive lattice of lower order ideals of F (β),
ordered by containment, and let r(β) be its rank sequence.

b

c

a

d

e

f

F (2, 1, 1, 2)

∅

a d

ab af ad

abf abd adf

abdf abcd adef

abcdf abdef

abcdefL(2, 1, 1, 2)

1

2

3

3

3

2

1
rk

Theorem (Oğuz and Ravichandran ’21)

For every circular fence, the sequence r(β) is symmetric.

The proof uses algebraic manipulation of recurrence relations.
We will give a bijective proof by modifying our bijection for fences.
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Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

Φ : {ideals of F (β)} → {filters of F (β)}.

First consider the case where ascending segments have length 1.
Let β = (1, δ1, 1, δ2, . . . , 1, δ`), and let D1, . . . ,D` be the
descending segments of F (β).

An ideal I of F (β) can be encoded by a sequence d1, d2, . . . , d`,
where di = |I ∩ Di |, satisfying:

1 for i ∈ [`] we have 0 ≤ di ≤ |Di |,
2 for i ∈ [`], if di = |Di | then di−1 > 0, with subscripts

modulo `.

Similarly, a filter U of F (β) can be encoded by a sequence
e1, e2, . . . , e`, where ei = |U ∩ Di |, satisfying analogous conditions.
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We want a cardinality-preserving bijection
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The bijection φ for F (1, δ1, 1, δ2, . . . , 1, δ`)

If d : d1, d2, . . . , d` encodes an ideal I , denote by 〈d〉 the circular
sequence with subscripts taken modulo `, so that d` and d1 are
considered adjacent.

Next we define φ(I ).

If all the entries of 〈d〉 are positive, do nothing. Otherwise:

1 For each maximal block B of positive integers in 〈d〉, factor it
as B = B ′T , where T is the maximal suffix consisting of 1s.

2 For each nonempty T , exchange T with the 0 to its right.
3 For each B ′ with |B ′| ≥ 2, decrease its last entry by 1 and

increase its first entry by 1.

The resulting sequence encodes the filter φ(I ).

〈7, 1, 1, 0, 5, 1, 0, 0, 3〉
〈7, 1, 1, 0, 5, 1, 0, 0, 3〉
〈7, 1, 1, 0, 5, 1, 0, 0, 3〉
〈7, 0, 1, 1, 5, 0, 1, 0, 3〉
〈6, 0, 1, 1, 5, 0, 1, 0, 4〉
〈6, 0, 1, 1, 5, 0, 1, 0, 4〉
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Encoding ideals/filters of arbitrary circular fences F (β)

Consider now the general case, where β = (β1, β2, . . . , β2`).

Ascending segments with shared elements removed: Ã1, Ã2, . . . , Ã`.
Descending segments: D1,D2, . . . ,D`.

An ideal I of F (β) can be encoded by an array

a1 a2 · · · a` a1
d1 d2 · · · d`

where ai = |I ∩ Ãi | and di = |I ∩ Di |, satisfying:
1 for i ∈ [`] we have 0 ≤ ai ≤ |Ãi |,
2 for i ∈ [`] we have 0 ≤ di ≤ |Di |,
3 for i ∈ [`], if di = |Di | then ai = |Ãi | and di−1 > 0,

4 for i ∈ [`], if ai > 0 then di−1 > 0,

with subscripts modulo `.

A filter of F (β) can be encoded similarly.
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Descending segments: D1,D2, . . . ,D`.

An ideal I of F (β) can be encoded by an array

a1 a2 · · · a` a1
d1 d2 · · · d`
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Encoding ideals/filters of arbitrary circular fences F (β)

F (2, 1, 2, 3, 1, 2, 2, 1)

1

≤

1

≤

0

≤

1

≤

1 0 0

1

2 1 1 1
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The bijection Φ for arbitrary circular fences F (β)

Suppose that an ideal I of F (β) is encoded by an array
a1 a2 · · · a` a1

d1 d2 · · · d`

We perform the following operations, with subscripts modulo `:

1 For every i ∈ [`] s.t. di = 1 and ai+1 < |Ãi+1|, let di := 0 and
ai+1 := ai+1 + 1.

2 If there exists i with , split into linear factors between di−1
and di for each such i ,

and apply φ to each factor.

If no such
i exists, apply the previous map φ to .
In both cases, let be the resulting sequence. Let b := a.

3 For every i ∈ [`] s.t. & , let & .

The resulting array encodes a filter Φ(I ).

1

≤

1

≤

0

≤

1

≤

1 1 0 0 1
2 1 1 1

1
≤

1

≤

0

≤
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ai+1 := ai+1 + 1.

2 If there exists i with , split into linear factors between di−1
and di for each such i ,

and apply φ to each factor.

If no such
i exists, apply the previous map φ to .
In both cases, let be the resulting sequence. Let b := a.

3 For every i ∈ [`] s.t. & , let & .

The resulting array encodes a filter Φ(I ).

1

≤

1

≤

0

≤

1

≤

1 1 0 1 1
2 1 0 1

1
≤

1

≤

0

≤

1

≤

1 0 0 1 1
2 1 0 1

Sergi Elizalde Partial rank symmetry of distributive lattices for fences



The bijection Φ for arbitrary circular fences F (β)

Suppose that an ideal I of F (β) is encoded by an array
a1 a2 · · · a` a1

d1 d2 · · · d`

We perform the following operations, with subscripts modulo `:

1 For every i ∈ [`] s.t. di = 1 and ai+1 < |Ãi+1|, let di := 0 and
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a1 a2 · · · a` a1

d1 d2 · · · d`

We perform the following operations, with subscripts modulo `:

1 For every i ∈ [`] s.t. di = 1 and ai+1 < |Ãi+1|, let di := 0 and
ai+1 := ai+1 + 1.

2 If there exists i with ai < |Ãi |, split 〈d〉 into linear factors
between di−1 and di for each such i , and apply φ to each
factor. If no such i exists, apply the previous map φ to 〈d〉.
In both cases, let e be the resulting sequence. Let b := a.

3 For every i ∈ [`] s.t. bi > 0 & ei = 0, let bi := bi−1 & ei := 1.

The resulting array encodes a filter Φ(I ).
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Example of Φ

I = 1 1 0 0 1
2 1 1 1

Φ

Φ(I ) = 1 0 0 1 1
1 1 1 2

The inverse map Φ
−1

can be described by applying Φ to the
horizontal reflection of the arrays.
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Rowmotion on antichains of a poset

antichains

generate
ideal

ρArowmotion

order ideals

complement

ρI

order filters

minimal
elements

generate
ideal

ρArowmotion

complement

ρI

minimal
elements

generate
ideal complement · · ·
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Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet ’73 in a special case, and
independently by Brouwer and Schrijver ’74.

Given a set S and a bijection ρ : S → S , a statistic on S is called
homomesic under the action of ρ if its average over each orbit is
the same.

A statistic on S is called homometric under the action of ρ if its
average over orbits of the same size is the same.

By definition, homomesic implies homometric.

For an antichain A, define the stiatistic χA(A) = |A|.

For an ideal I , define the stiatistic χI(I ) = |I |.
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Rowmotion on fences

ρA

Theorem (E.–Plante–Roby–Sagan ’21)

For fences with two segments F (a− 1, b − 1):

rowmotion has gcd(a, b) orbits, of which all have size
lcm(a, b) except for one that has size lcm(a, b) + 1.

the statistic χA is homometric under the action of ρA,

the statistic χI is homometric under the action of ρI .

ρA ρA ρA ρA ρA
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Rowmotion on fences

Theorem (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a, b, a):

the statistic χA is homometric under the action of ρA,

the statistic χI is homomesic under the action of ρI .

The proof relies on a certain encoding of the orbits as tilings:

Conjecture (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a− 1, a, a, . . . , a, a− 1):

the statistic χA is homometric under the action of ρA,

if the number of segments is odd, the statistic χI is
homomesic under the action of ρI .

Sergi Elizalde Partial rank symmetry of distributive lattices for fences



Rowmotion on fences

Theorem (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a, b, a):

the statistic χA is homometric under the action of ρA,

the statistic χI is homomesic under the action of ρI .

The proof relies on a certain encoding of the orbits as tilings:

Conjecture (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a− 1, a, a, . . . , a, a− 1):

the statistic χA is homometric under the action of ρA,

if the number of segments is odd, the statistic χI is
homomesic under the action of ρI .

Sergi Elizalde Partial rank symmetry of distributive lattices for fences



Rowmotion on fences

Theorem (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a, b, a):

the statistic χA is homometric under the action of ρA,

the statistic χI is homomesic under the action of ρI .

The proof relies on a certain encoding of the orbits as tilings:

Conjecture (E.–Plante–Roby–Sagan ’21)

For fences of the form F (a− 1, a, a, . . . , a, a− 1):

the statistic χA is homometric under the action of ρA,

if the number of segments is odd, the statistic χI is
homomesic under the action of ρI .

Sergi Elizalde Partial rank symmetry of distributive lattices for fences



Open questions

For fences F (β), Oğuz and Ravichandran proved recursively that
the sequences r(β) are unimodal and, more strongly, bottom or
top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

In the case of circular fences F (β), unimodality of r(β) does not
always hold, but it often does.

Conjecture (Oğuz–Ravichandran ’21)

Assuming β has an even number of parts, r(β) is unimodal except
when β = (1, k, 1, k) or β = (k , 1, k, 1) for some k ≥ 1.

Question 2

Can this be proved by modifying the bijection Φ?
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Open problems

Recall that a0, a1, . . . , an is log-concave if

a2i ≥ ai−1ai+1

for all 0 < i < n. For positive sequences, this condition implies
unimodality.

Question 3

For which β are r(β) or r(β) log-concave?

The sequences r(β) are not always log-concave, e.g.
r(1, 1) : 1, 2, 1, 1.

The sequences r(β) can be unimodal but not log-concave, e.g.
r(1, 1, 1, 1, 1, 1) : 1, 3, 3, 4, 3, 1.
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Open problems

For any poset P, denote by L(P) its lattice of order ideals.

Question 4

What conditions on P imply that the rank sequence of L(P)
satisfies conditions such as symmetry, unimodality, etc.?

THE END

Elizalde and Sagan, Partial rank symmetry of distributive lattices for fences,
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