Partial rank symmetry of distributive lattices for fences

Sergi Elizalde
(joint work with Bruce Sagan)

Dartmouth College

University of Minnesota Combinatorics Seminar
April 22, 2022

Fence posets

Let $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right)$ with $\beta_{i} \geq 1$ for all i.

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$, where the i th and $(i+1)$ st chains share their maximum element if i is odd, and they share their minimum element if i is even.

Fence posets

$$
\text { Let } \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) \text { with } \beta_{i} \geq 1 \text { for all } i \text {. }
$$

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$, where the i th and $(i+1)$ st chains share their maximum element if i is odd, and they share their minimum element if i is even.

The i th chain is called an ascending segment if i is odd, and a descending segment if i is even.

Fence posets

$$
\text { Let } \beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) \text { with } \beta_{i} \geq 1 \text { for all } i \text {. }
$$

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$, where the i th and $(i+1)$ st chains share their maximum element if i is odd, and they share their minimum element if i is even.

The i th chain is called an ascending segment if i is odd, and a descending segment if i is even.
Let $n=|F(\beta)|=\beta_{1}+\cdots+\beta_{s}+1$.

Lower order ideals

A lower order ideal of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.

$$
F(2,2,1)
$$

Lower order ideals

A lower order ideal of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.
Let $L(\beta)$ be the distributive lattice of lower order ideals of $F(\beta)$, ordered by containment.

Lower order ideals

A lower order ideal of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.
Let $L(\beta)$ be the distributive lattice of lower order ideals of $F(\beta)$, ordered by containment.

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler-Thomas '09, Musiker -Schiffler-Williams '11, Yurikusa '19, Claussen '20, Propp '20].

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler-Thomas '09, Musiker -Schiffler-Williams '11, Yurikusa '19, Claussen '20, Propp '20].
Since $L(\beta)$ is ranked, it has an associated rank sequence

$$
r(\beta): r_{0}, r_{1}, \ldots, r_{n}
$$

where

$$
\begin{aligned}
r_{k} & =\text { number of elements at rank } k \text { in } L(\beta) \\
& =\text { number of ideals of } F(\beta) \text { of size } k .
\end{aligned}
$$

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler-Thomas '09, Musiker -Schiffler-Williams '11, Yurikusa '19, Claussen '20, Propp '20].
Since $L(\beta)$ is ranked, it has an associated rank sequence

$$
r(\beta): r_{0}, r_{1}, \ldots, r_{n}
$$

where

$$
\begin{aligned}
r_{k} & =\text { number of elements at rank } k \text { in } L(\beta) \\
& =\text { number of ideals of } F(\beta) \text { of size } k .
\end{aligned}
$$

The corresponding rank generating functions

$$
r(q ; \beta)=\sum_{k=0}^{n} r_{k} q^{k}
$$

were used by Morier-Genoud and Ovsienko '20 to define q-analogues of rational and real numbers.

The rank generating function: example

The rank generating function: example

The rank generating function: a larger example

For $\beta=(4,3,2,1,5)$, we have

$$
r(\beta): 1,3,7,13,21,29,37,42,45,44,38,30,21,13,7,3,1
$$

The rank generating function: a larger example

For $\beta=(4,3,2,1,5)$, we have

$$
r(\beta): 1,3,7,13,21,29,37,42,45,44,38,30,21,13,7,3,1
$$

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is unimodal if there is an index m such that

$$
r_{0} \leq r_{1} \leq \ldots \leq r_{m} \geq r_{m+1} \geq \ldots \geq r_{n}
$$

The rank generating function: a larger example

For $\beta=(4,3,2,1,5)$, we have

$$
r(\beta): 1,3,7,13,21,29,37,42,45,44,38,30,21,13,7,3,1
$$

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is unimodal if there is an index m such that

$$
r_{0} \leq r_{1} \leq \ldots \leq r_{m} \geq r_{m+1} \geq \ldots \geq r_{n}
$$

Conjecture (Morier-Genoud, Ovsienko '20)

For all β, the sequence $r(\beta)$ is unimodal.

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,
- top heavy if $\quad r_{k} \leq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,
- top heavy if $\quad r_{k} \leq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- bottom heavy if $r_{k} \geq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,
- top heavy if $\quad r_{k} \leq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- bottom heavy if $r_{k} \geq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- top interlacing if $\quad r_{0} \leq r_{n} \leq r_{1} \leq r_{n-1} \leq \ldots \leq r_{\lceil n / 2\rceil}$,

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,
- top heavy if $\quad r_{k} \leq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- bottom heavy if $r_{k} \geq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- top interlacing if $r_{0} \leq r_{n} \leq r_{1} \leq r_{n-1} \leq \ldots \leq r_{\lceil n / 2\rceil}$,
- bottom interlacing if $r_{n} \leq r_{0} \leq r_{n-1} \leq r_{1} \leq \ldots \leq r_{\lfloor n / 2\rfloor}$.

Other properties of sequences

Definition

A sequence $r_{0}, r_{1}, \ldots, r_{n}$ is

- symmetric if $\quad r_{k}=r_{n-k} \quad$ for $0 \leq k \leq n$,
- top heavy if $\quad r_{k} \leq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- bottom heavy if $r_{k} \geq r_{n-k} \quad$ for $0 \leq k<\lfloor n / 2\rfloor$,
- top interlacing if $r_{0} \leq r_{n} \leq r_{1} \leq r_{n-1} \leq \ldots \leq r_{\lceil n / 2\rceil}$,
- bottom interlacing if $r_{n} \leq r_{0} \leq r_{n-1} \leq r_{1} \leq \ldots \leq r_{\lfloor n / 2\rfloor}$.
top interlacing \Longrightarrow top heavy and unimodal
bottom interlacing \Longrightarrow bottom heavy and unimodal

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let $\beta=\left(\beta_{1}, \ldots, \beta_{s}\right)$.

- If $s=1$ then $r(\beta)=(1,1, \ldots, 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \geq 3$ is odd and let $\beta^{\prime}=\left(\beta_{2}, \ldots, \beta_{s-1}\right)$.
- If $\beta_{1}>\beta_{s}$ then $r(\beta)$ is bottom interlacing.
- If $\beta_{1}<\beta_{s}$ then $r(\beta)$ is top interlacing.
- If $\beta_{1}=\beta_{s}$ then $r(\beta)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\beta^{\prime}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let $\beta=\left(\beta_{1}, \ldots, \beta_{s}\right)$.

- If $s=1$ then $r(\beta)=(1,1, \ldots, 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \geq 3$ is odd and let $\beta^{\prime}=\left(\beta_{2}, \ldots, \beta_{s-1}\right)$.
- If $\beta_{1}>\beta_{s}$ then $r(\beta)$ is bottom interlacing.
- If $\beta_{1}<\beta_{s}$ then $r(\beta)$ is top interlacing.
- If $\beta_{1}=\beta_{s}$ then $r(\beta)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\beta^{\prime}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

Theorem (Oğuz and Ravichandran '21)

The above conjectures are true.

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let $\beta=\left(\beta_{1}, \ldots, \beta_{s}\right)$.

- If $s=1$ then $r(\beta)=(1,1, \ldots, 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \geq 3$ is odd and let $\beta^{\prime}=\left(\beta_{2}, \ldots, \beta_{s-1}\right)$.
- If $\beta_{1}>\beta_{s}$ then $r(\beta)$ is bottom interlacing.
- If $\beta_{1}<\beta_{s}$ then $r(\beta)$ is top interlacing.
- If $\beta_{1}=\beta_{s}$ then $r(\beta)$ is symmetric, bottom interlacing, or top interlacing depending on whether $r\left(\beta^{\prime}\right)$ is symmetric, top interlacing, or bottom interlacing, respectively.

Theorem (Oğuz and Ravichandran '21)

The above conjectures are true.
The proof uses induction and algebraic manipulation, as well as a circular version of fences.

Our main result

In general, the sequence $r(\beta)$ is not symmetric, but we will show that it is exhibits partial symmetry.

Theorem

Suppose that $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right)$ where s is odd. Then, for all $k \leq \min \left\{\beta_{1}, \beta_{s}\right\}$ we have

$$
r_{k}=r_{n-k}
$$

Our main result

In general, the sequence $r(\beta)$ is not symmetric, but we will show that it is exhibits partial symmetry.

Theorem

Suppose that $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right)$ where s is odd. Then, for all $k \leq \min \left\{\beta_{1}, \beta_{s}\right\}$ we have

$$
r_{k}=r_{n-k}
$$

Example

For $\beta=(4,3,2,1,5)$, we have

$$
r(\beta): 1,3,7,13,21,29,37,42,45,44,38,30,21,13,7,3,1
$$

Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean lower order ideal, and filter to mean upper order ideal.

Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean lower order ideal, and filter to mean upper order ideal.

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$ with an odd number of parts.

$$
\begin{aligned}
& \mathcal{I}_{k}(\beta)=\text { ideals of } F(\beta) \text { of size } k \\
& \mathcal{U}_{k}(\beta)=\text { filters of } F(\beta) \text { of size } k
\end{aligned}
$$

Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean lower order ideal, and filter to mean upper order ideal.

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$ with an odd number of parts.

$$
\begin{aligned}
& \mathcal{I}_{k}(\beta)=\text { ideals of } F(\beta) \text { of size } k \\
& \mathcal{U}_{k}(\beta)=\text { filters of } F(\beta) \text { of size } k
\end{aligned}
$$

We have $\left|\mathcal{I}_{k}(\beta)\right|=r_{k}$ and $\left|\mathcal{U}_{k}(\beta)\right|=r_{n-k}$.

Ideals and filters

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean lower order ideal, and filter to mean upper order ideal.

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$ with an odd number of parts.

$$
\begin{aligned}
& \mathcal{I}_{k}(\beta)=\text { ideals of } F(\beta) \text { of size } k \\
& \mathcal{U}_{k}(\beta)=\text { filters of } F(\beta) \text { of size } k
\end{aligned}
$$

We have $\left|\mathcal{I}_{k}(\beta)\right|=r_{k}$ and $\left|\mathcal{U}_{k}(\beta)\right|=r_{n-k}$.
To give a bijective proof of our main result, we will construct a bijection

$$
\Phi: \mathcal{I}_{k}(\beta) \rightarrow \mathcal{U}_{k}(\beta)
$$

for all $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.

A simpler case: gates

A gate is obtained by removing the first and last segments of a fence, and requiring ascending segments to have length one.

A simpler case: gates

A gate is obtained by removing the first and last segments of a fence, and requiring ascending segments to have length one.

For a composition $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{\ell}\right)$, define the gate

$$
G(\delta)=F\left(\delta_{1}, 1, \delta_{2}, 1, \ldots, \delta_{\ell-1}, 1, \delta_{\ell}\right)^{*}
$$

where * indicates poset dual.

Restricted ideals of gates

Let D_{1}, \ldots, D_{ℓ} be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $\left|I \cap D_{1}\right|<\left|D_{1}\right|$ and $\left|I \cap D_{\ell}\right| \neq 1$.

Restricted ideals of gates

Let D_{1}, \ldots, D_{ℓ} be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $\left|I \cap D_{1}\right|<\left|D_{1}\right|$ and $\left|I \cap D_{\ell}\right| \neq 1$.
A filter U of $G(\delta)$ is restricted if $\left|U \cap D_{1}\right| \neq 1$ and $\left|U \cap D_{\ell}\right|<\left|D_{\ell}\right|$.

Restricted ideals of gates

Let D_{1}, \ldots, D_{ℓ} be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $\left|I \cap D_{1}\right|<\left|D_{1}\right|$ and $\left|I \cap D_{\ell}\right| \neq 1$.
A filter U of $G(\delta)$ is restricted if $\left|U \cap D_{1}\right| \neq 1$ and $\left|U \cap D_{\ell}\right|<\left|D_{\ell}\right|$.

We will describe a cardinality-preserving bijection
$\phi:\{$ restricted ideals of $G(\delta)\} \rightarrow$ \{restricted filters of $G(\delta)\}$.

Encoding restricted ideals/filters of gates

A restricted ideal I of $G(\delta)$ can be encoded by a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$, where $d_{i}=\left|I \cap D_{i}\right|$.

Encoding restricted ideals/filters of gates

A restricted ideal I of $G(\delta)$ can be encoded by a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$, where $d_{i}=\left|I \cap D_{i}\right|$.

Such sequences can be characterized as those satisfying:
(1) for $i \in[\ell]$, we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(2) for $i \in[2, \ell]$, if $d_{i}=\left|D_{i}\right|$ then $d_{i-1}>0$,
(3) $d_{1}<\left|D_{1}\right|$ and $d_{\ell} \neq 1$.

Encoding restricted ideals/filters of gates

A restricted ideal I of $G(\delta)$ can be encoded by a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$, where $d_{i}=\left|I \cap D_{i}\right|$.

Such sequences can be characterized as those satisfying:
(1) for $i \in[\ell]$, we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(2) for $i \in[2, \ell]$, if $d_{i}=\left|D_{i}\right|$ then $d_{i-1}>0$,
(3) $d_{1}<\left|D_{1}\right|$ and $d_{\ell} \neq 1$.

Similarly, a restricted filter U of $G(\delta)$ can be encoded by a sequence $e_{1}, e_{2}, \ldots, e_{\ell}$, where $e_{i}=\left|U \cap D_{i}\right|$, characterized by similar conditions.

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I:

$$
6,1,1,1,0,4,5,1,1,0,0,3,1,2
$$

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I :
(1) For each maximal block (consecutive subsequence) B of positive integers,

$$
\begin{aligned}
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2
\end{aligned}
$$

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I :
(1) For each maximal block (consecutive subsequence) B of positive integers, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .

$$
\begin{aligned}
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2
\end{aligned}
$$

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I :
(1) For each maximal block (consecutive subsequence) B of positive integers, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.

$$
\begin{aligned}
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,0,1,1,1,4,5,0,1,1,0,3,1,2
\end{aligned}
$$

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I:
(1) For each maximal block (consecutive subsequence) B of positive integers, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.
(3) For each B^{\prime} with $\left|B^{\prime}\right| \geq 2$, decrease its rightmost entry by 1 and increase its leftmost entry by 1.

$$
\begin{aligned}
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,0,1,1,1,4,5,0,1,1,0,3,1,2 \\
& 6,0,1,1,1,5,4,0,1,1,0,4,1,1
\end{aligned}
$$

The bijection ϕ for restricted ideals/filters of gates

Given a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$ encoding a restricted ideal I:
(1) For each maximal block (consecutive subsequence) B of positive integers, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.
(3) For each B^{\prime} with $\left|B^{\prime}\right| \geq 2$, decrease its rightmost entry by 1 and increase its leftmost entry by 1.
The resulting sequence encodes a restricted filter $\phi(I)$.

$$
\begin{aligned}
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \\
& 6,0,1,1,1,4,5,0,1,1,0,3,1,2 \\
& 6,0,1,1,1,5,4,0,1,1,0,4,1,1 \\
& 6,0,1,1,1,5,4,0,1,1,0,4,1,1
\end{aligned}
$$

The general case: encoding ideals of fences

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$, and let $F=F(\beta)$.
Ascending segments: $A_{1}, A_{2}, \ldots, A_{\ell+1}$. Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.

The general case: encoding ideals of fences

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$, and let $F=F(\beta)$.
Ascending segments: $A_{1}, A_{2}, \ldots, A_{\ell+1}$.
Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.
Let \tilde{A}_{i} be obtained from A_{i} by removing the elements shared with descending segments, so that each element appears in exactly one of the \tilde{A}_{i} or D_{i}.

The general case: encoding ideals of fences

Fix $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell+1}\right)$, and let $F=F(\beta)$.
Ascending segments: $A_{1}, A_{2}, \ldots, A_{\ell+1}$.
Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.
Let \tilde{A}_{i} be obtained from A_{i} by removing the elements shared with descending segments, so that each element appears in exactly one of the \tilde{A}_{i} or D_{i}.

$$
F(6,2,1,2,3,1,6)
$$

The general case: encoding ideals of fences

We encode ideals $/$ of F as arrays of numbers

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap D_{i}\right|$ for all i.

The general case: encoding ideals of fences

We encode ideals $/$ of F as arrays of numbers

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap D_{i}\right|$ for all i.

The general case: encoding ideals of fences

We encode ideals $/$ of F as arrays of numbers

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap D_{i}\right|$ for all i.
Note that $|I|=\sum_{i} a_{i}+\sum_{i} d_{i}$.

The general case: encoding ideals of fences

Such an array encodes an ideal of F if and only if:
(1) for $i \in[\ell+1]$ we have $0 \leq a_{i} \leq\left|\tilde{A}_{i}\right|$,
(2) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(3) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $a_{i}=\left|\tilde{A}_{i}\right|$, and if $i>1$ then $d_{i-1}>0$ as well,
(9) for $i \in[\ell]$, if $a_{i+1}>0$ then $d_{i}>0$.

$$
\begin{gathered}
\left|\tilde{A}_{1}\right|=6 \quad\left|\tilde{A}_{2}\right|=0 \quad\left|\tilde{A}_{3}\right|=2 \quad\left|\tilde{A}_{4}\right|=6 \\
\left|D_{1}\right|=3 \quad\left|D_{2}\right|=3 \quad\left|D_{3}\right|=2
\end{gathered}
$$

$$
I=
$$

The general case: encoding ideals of fences

Such an array encodes an ideal of F if and only if:
(1) for $i \in[\ell+1]$ we have $0 \leq a_{i} \leq\left|\tilde{A}_{i}\right|$,
(2) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(3) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $a_{i}=\left|\tilde{A}_{i}\right|$, and if $i>1$ then $d_{i-1}>0$ as well,
(1) for $i \in[\ell]$, if $a_{i+1}>0$ then $d_{i}>0$.

Similarly, we encode filters U of F as arrays of numbers

where $b_{i}=\left|U \cap \tilde{A}_{i}\right|$ and $e_{i}=\left|U \cap D_{i}\right|$ for all i.
Such arrays can be characterized by similar conditions.

The bijection Φ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$. Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}	${ }^{a_{2}}$		\cdots		a_{ℓ}		
	d_{1}		d_{2}		\cdots		d_{ℓ}

6	0	2	6
VI	VI	VI	VI
0	0	1	0

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$. Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

| a_{1} | ${ }^{3}$ | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$. Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}		
	d_{1}		d_{2}		\cdots		d_{ℓ}	

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$. Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | $d_{\ell}+1$ |

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$.

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.
Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}	
	d_{1}		d_{2}		\cdots		d_{ℓ}

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$. Apply ϕ from before to each factor

The bijection ϕ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.
Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}	
	d_{1}		d_{2}		\cdots		d_{ℓ}

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$. Apply ϕ from before to each factor to obtain a sequence e. Let $b:=a$.

The bijection Φ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.
Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}	
	d_{1}		d_{2}		\cdots		d_{ℓ}

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$. Apply ϕ from before to each factor to obtain a sequence e. Let $b:=a$.
(3) For every i s.t. $b_{i}>0$ and $e_{i}=0$, let $b_{i}:=b_{i}-1$ and $e_{i}:=1$.

The bijection Φ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.
Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}	
	d_{1}		d_{2}		\cdots		d_{ℓ}

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$. Apply ϕ from before to each factor to obtain a sequence e. Let $b:=a$.
(3) For every i s.t. $b_{i}>0$ and $e_{i}=0$, let $b_{i}:=b_{i}-1$ and $e_{i}:=1$.

The bijection Φ for ideals/filters of fences

Next we define $\Phi: \mathcal{I}_{k}(F) \rightarrow \mathcal{U}_{k}(F)$, where $k \leq \min \left\{\beta_{1}, \beta_{2 \ell+1}\right\}$.
Suppose that $I \in \mathcal{I}_{k}(F)$ is encoded by an array

a_{1}		a_{2}		\cdots		a_{ℓ}	
	d_{1}		d_{2}		\cdots		d_{ℓ}

(1) For every i s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) Decompose $d_{1}, d_{2}, \ldots, d_{\ell}$ into factors by splitting between d_{i-1} and d_{i} for each $i \in[2, \ell]$ such that $a_{i}<\left|\tilde{A}_{i}\right|$. Apply ϕ from before to each factor to obtain a sequence e. Let $b:=a$.
(3) For every i s.t. $b_{i}>0$ and $e_{i}=0$, let $b_{i}:=b_{i}-1$ and $e_{i}:=1$.

The resulting array encodes the filter $\Phi(I)$.

Example of \varnothing

Example of Φ

Example of ϕ

The inverse Φ^{-1} is essentially Φ conjugated with 180° rotation.

Circular fences

Oğuz and Ravichandran's proof of the (refined) unimodality of the sequences $r(\beta)$ relies on so-called circular fences.

Circular fences

Oğuz and Ravichandran's proof of the (refined) unimodality of the sequences $r(\beta)$ relies on so-called circular fences.

Let $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right)$, where s is even.

Definition

The circular fence $\bar{F}(\beta)$ is obtained by identifying the leftmost and the rightmost elements of $F(\beta)$.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\bar{r}(\beta)$ is symmetric.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.
$\bar{F}(2,1,1,2)$

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\bar{r}(\beta)$ is symmetric.
The proof uses algebraic manipulation of recurrence relations.

Rank symmetry for circular fences

Let $\bar{L}(\beta)$ be the distributive lattice of lower order ideals of $\bar{F}(\beta)$, ordered by containment, and let $\bar{r}(\beta)$ be its rank sequence.

$$
\bar{F}(2,1,1,2)
$$

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\bar{r}(\beta)$ is symmetric.
The proof uses algebraic manipulation of recurrence relations.
We will give a bijective proof by modifying our bijection for fences.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection
$\bar{\Phi}:\{$ ideals of $\bar{F}(\beta)\} \rightarrow\{$ filters of $\bar{F}(\beta)\}$.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

$$
\bar{\Phi}:\{\text { ideals of } \bar{F}(\beta)\} \rightarrow\{\text { filters of } \bar{F}(\beta)\} .
$$

First consider the case where ascending segments have length 1 . Let $\beta=\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$, and let D_{1}, \ldots, D_{ℓ} be the descending segments of $\bar{F}(\beta)$.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

$$
\bar{\Phi}:\{\text { ideals of } \bar{F}(\beta)\} \rightarrow\{\text { filters of } \bar{F}(\beta)\} .
$$

First consider the case where ascending segments have length 1 . Let $\beta=\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$, and let D_{1}, \ldots, D_{ℓ} be the descending segments of $\bar{F}(\beta)$.

An ideal I of $\bar{F}(\beta)$ can be encoded by a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$, where $d_{i}=\left|I \cap D_{i}\right|$, satisfying:
(1) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(2) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $d_{i-1}>0$, with subscripts modulo ℓ.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

$$
\bar{\Phi}:\{\text { ideals of } \bar{F}(\beta)\} \rightarrow\{\text { filters of } \bar{F}(\beta)\} .
$$

First consider the case where ascending segments have length 1. Let $\beta=\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$, and let D_{1}, \ldots, D_{ℓ} be the descending segments of $\bar{F}(\beta)$.
An ideal I of $\bar{F}(\beta)$ can be encoded by a sequence $d_{1}, d_{2}, \ldots, d_{\ell}$, where $d_{i}=\left|I \cap D_{i}\right|$, satisfying:
(1) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(2) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $d_{i-1}>0$, with subscripts modulo ℓ.

Similarly, a filter U of $\bar{F}(\beta)$ can be encoded by a sequence $e_{1}, e_{2}, \ldots, e_{\ell}$, where $e_{i}=\left|U \cap D_{i}\right|$, satisfying analogous conditions.

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent.

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing.

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing. Otherwise:
(1) For each maximal block B of positive integers in $\langle d\rangle$,

$$
\begin{aligned}
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle
\end{aligned}
$$

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing. Otherwise:
(1) For each maximal block B of positive integers in $\langle d\rangle$, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .

$$
\begin{aligned}
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle
\end{aligned}
$$

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing. Otherwise:
(1) For each maximal block B of positive integers in $\langle d\rangle$, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.

$$
\begin{aligned}
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,0,1,1,5,0,1,0,3\rangle
\end{aligned}
$$

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing. Otherwise:
(1) For each maximal block B of positive integers in $\langle d\rangle$, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.
(3) For each B^{\prime} with $\left|B^{\prime}\right| \geq 2$, decrease its last entry by 1 and increase its first entry by 1 .

$$
\begin{aligned}
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,0,1,1,5,0,1,0,3\rangle \\
& \langle 6,0,1,1,5,0,1,0,4\rangle
\end{aligned}
$$

The bijection $\bar{\phi}$ for $\bar{F}\left(1, \delta_{1}, 1, \delta_{2}, \ldots, 1, \delta_{\ell}\right)$

If $d: d_{1}, d_{2}, \ldots, d_{\ell}$ encodes an ideal I, denote by $\langle d\rangle$ the circular sequence with subscripts taken modulo ℓ, so that d_{ℓ} and d_{1} are considered adjacent. Next we define $\bar{\phi}(I)$.
If all the entries of $\langle d\rangle$ are positive, do nothing. Otherwise:
(1) For each maximal block B of positive integers in $\langle d\rangle$, factor it as $B=B^{\prime} T$, where T is the maximal suffix consisting of 1 s .
(2) For each nonempty T, exchange T with the 0 to its right.
(3) For each B^{\prime} with $\left|B^{\prime}\right| \geq 2$, decrease its last entry by 1 and increase its first entry by 1 .
The resulting sequence encodes the filter $\bar{\phi}(I)$.

$$
\begin{aligned}
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,1,1,0,5,1,0,0,3\rangle \\
& \langle 7,0,1,1,5,0,1,0,3\rangle \\
& \langle 6,0,1,1,5,0,1,0,4\rangle \\
& \langle 6,0,1,1,5,0,1,0,4\rangle
\end{aligned}
$$

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Consider now the general case, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell}\right)$.

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Consider now the general case, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell}\right)$.
Ascending segments with shared elements removed: $\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Consider now the general case, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell}\right)$.
Ascending segments with shared elements removed: $\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.

An ideal I of $\bar{F}(\beta)$ can be encoded by an array

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap D_{i}\right|$,

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Consider now the general case, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell}\right)$.
Ascending segments with shared elements removed: $\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.

An ideal I of $\bar{F}(\beta)$ can be encoded by an array

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap \tilde{D}_{i}\right|$, satisfying:
(1) for $i \in[\ell]$ we have $0 \leq a_{i} \leq\left|\tilde{A}_{i}\right|$,
(2) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(3) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $a_{i}=\left|\tilde{A}_{i}\right|$ and $d_{i-1}>0$,
(9) for $i \in[\ell]$, if $a_{i}>0$ then $d_{i-1}>0$,
with subscripts modulo ℓ.

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Consider now the general case, where $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{2 \ell}\right)$.
Ascending segments with shared elements removed: $\tilde{A}_{1}, \tilde{A}_{2}, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_{1}, D_{2}, \ldots, D_{\ell}$.

An ideal I of $\bar{F}(\beta)$ can be encoded by an array

where $a_{i}=\left|I \cap \tilde{A}_{i}\right|$ and $d_{i}=\left|I \cap \tilde{D}_{i}\right|$, satisfying:
(1) for $i \in[\ell]$ we have $0 \leq a_{i} \leq\left|\tilde{A}_{i}\right|$,
(2) for $i \in[\ell]$ we have $0 \leq d_{i} \leq\left|D_{i}\right|$,
(3) for $i \in[\ell]$, if $d_{i}=\left|D_{i}\right|$ then $a_{i}=\left|\tilde{A}_{i}\right|$ and $d_{i-1}>0$,
(4) for $i \in[\ell]$, if $a_{i}>0$ then $d_{i-1}>0$,
with subscripts modulo ℓ.
A filter of $\bar{F}(\beta)$ can be encoded similarly.

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

1		1		0		1	
$V \mid$		$V \mid$		$V \mid$		$V \mid$	
1		1		0		0	
	2		1		1		1

Encoding ideals/filters of arbitrary circular fences $\bar{F}(\beta)$

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | a_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | a_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i,

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | a_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}<\left|\tilde{A}_{i}\right|$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | a_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor. If no such i exists, apply the previous map $\bar{\phi}$ to $\langle d\rangle$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor. If no such i exists, apply the previous map $\bar{\phi}$ to $\langle d\rangle$. In both cases, let e be the resulting sequence. Let $b:=a$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor. If no such i exists, apply the previous map $\bar{\phi}$ to $\langle d\rangle$. In both cases, let e be the resulting sequence. Let $b:=a$.
(3) For every $i \in[\ell]$ s.t. $b_{i}>0 \& e_{i}=0$, let $b_{i}:=b_{i}-1 \& e_{i}:=1$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor. If no such i exists, apply the previous map $\bar{\phi}$ to $\langle d\rangle$. In both cases, let e be the resulting sequence. Let $b:=a$.
(3) For every $i \in[\ell]$ s.t. $b_{i}>0 \& e_{i}=0$, let $b_{i}:=b_{i}-1 \& e_{i}:=1$.

The bijection $\bar{\phi}$ for arbitrary circular fences $\bar{F}(\beta)$

Suppose that an ideal I of $\bar{F}(\beta)$ is encoded by an array

| a_{1} | | a_{2} | | \cdots | | a_{ℓ} | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | d_{1} | | d_{2} | | \cdots | | d_{ℓ} |

We perform the following operations, with subscripts modulo ℓ :
(1) For every $i \in[\ell]$ s.t. $d_{i}=1$ and $a_{i+1}<\left|\tilde{A}_{i+1}\right|$, let $d_{i}:=0$ and $a_{i+1}:=a_{i+1}+1$.
(2) If there exists i with $a_{i}\langle | \tilde{A}_{i} \mid$, split $\langle d\rangle$ into linear factors between d_{i-1} and d_{i} for each such i, and apply ϕ to each factor. If no such i exists, apply the previous map $\bar{\phi}$ to $\langle d\rangle$. In both cases, let e be the resulting sequence. Let $b:=a$.
(3) For every $i \in[\ell]$ s.t. $b_{i}>0 \& e_{i}=0$, let $b_{i}:=b_{i}-1 \& e_{i}:=1$.

The resulting array encodes a filter $\bar{\Phi}(I)$.

Example of $\bar{\Phi}$

Example of $\bar{\Phi}$

Example of $\bar{\Phi}$

The inverse map $\bar{\Phi}^{-1}$ can be described by applying $\bar{\Phi}$ to the horizontal reflection of the arrays.

Rowmotion on antichains of a poset

antichains

Rowmotion on antichains of a poset

Rowmotion on antichains of a poset

Rowmotion on antichains of a poset

Rowmotion on antichains of a poset

Rowmotion on antichains of a poset

antichains

order ideals

order filters

Rowmotion on antichains of a poset

antichains
order ideals
order filters

minimal elements

Rowmotion on antichains of a poset

antichains
order ideals
order filters

rowmotion $\downarrow \rho_{\mathcal{A}}$
$\downarrow \rho_{\mathcal{I}}$

rowmotion $\downarrow \rho_{\mathcal{A}}$
$\downarrow \rho_{\mathcal{I}}$
minimal elements

Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet ' 73 in a special case, and independently by Brouwer and Schrijver ' 74 .

Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet ' 73 in a special case, and independently by Brouwer and Schrijver ' 74 .

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet ' 73 in a special case, and independently by Brouwer and Schrijver ' 74.

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet '73 in a special case, and independently by Brouwer and Schrijver '74.

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

By definition, homomesic implies homometric.

Rowmotion, homomesy and homometry

Rowmotion was first studied by Duchet '73 in a special case, and independently by Brouwer and Schrijver '74.

Given a set S and a bijection $\rho: S \rightarrow S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

By definition, homomesic implies homometric.
For an antichain A, define the stiatistic $\chi_{\mathcal{A}}(A)=|A|$.
For an ideal I, define the stiatistic $\chi_{\mathcal{I}}(I)=|I|$.

Rowmotion on fences

Rowmotion on fences

Theorem (E.-Plante-Roby-Sagan '21)

For fences with two segments $F(a-1, b-1)$:

- rowmotion has $\operatorname{gcd}(a, b)$ orbits, of which all have size $\operatorname{lcm}(a, b)$ except for one that has size $\operatorname{lcm}(a, b)+1$.

Rowmotion on fences

Theorem (E.-Plante-Roby-Sagan '21)

For fences with two segments $F(a-1, b-1)$:

- rowmotion has $\operatorname{gcd}(a, b)$ orbits, of which all have size $\operatorname{lcm}(a, b)$ except for one that has size $\operatorname{lcm}(a, b)+1$.
- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- the statistic $\chi_{\mathcal{I}}$ is homometric under the action of $\rho_{\mathcal{I}}$.

Rowmotion on fences

Theorem (E.-Plante-Roby-Sagan '21)

For fences of the form $F(a, b, a)$:

- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

Rowmotion on fences

Theorem (E.-Plante-Roby-Sagan '21)

For fences of the form $F(a, b, a)$:

- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

The proof relies on a certain encoding of the orbits as tilings:

Rowmotion on fences

Theorem (E.-Plante-Roby-Sagan '21)

For fences of the form $F(a, b, a)$:

- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

The proof relies on a certain encoding of the orbits as tilings:

Conjecture (E.-Plante-Roby-Sagan '21)
For fences of the form $F(a-1, a, a, \ldots, a, a-1)$:

- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- if the number of segments is odd, the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

Open questions

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Open questions

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

Open questions

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

In the case of circular fences $\bar{F}(\beta)$, unimodality of $\bar{r}(\beta)$ does not always hold, but it often does.

Conjecture (Oğuz-Ravichandran '21)

Assuming β has an even number of parts, $\bar{r}(\beta)$ is unimodal except when $\beta=(1, k, 1, k)$ or $\beta=(k, 1, k, 1)$ for some $k \geq 1$.

Open questions

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

In the case of circular fences $\bar{F}(\beta)$, unimodality of $\bar{r}(\beta)$ does not always hold, but it often does.

Conjecture (Oğuz-Ravichandran '21)

Assuming β has an even number of parts, $\bar{r}(\beta)$ is unimodal except when $\beta=(1, k, 1, k)$ or $\beta=(k, 1, k, 1)$ for some $k \geq 1$.

Question 2

Can this be proved by modifying the bijection $\bar{\Phi}$?

Open problems

Recall that $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave if

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

for all $0<i<n$. For positive sequences, this condition implies unimodality.

Open problems

Recall that $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave if

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

for all $0<i<n$. For positive sequences, this condition implies unimodality.

Question 3

For which β are $r(\beta)$ or $\bar{r}(\beta)$ log-concave?

Open problems

Recall that $a_{0}, a_{1}, \ldots, a_{n}$ is log-concave if

$$
a_{i}^{2} \geq a_{i-1} a_{i+1}
$$

for all $0<i<n$. For positive sequences, this condition implies unimodality.

Question 3

For which β are $r(\beta)$ or $\bar{r}(\beta)$ log-concave?

The sequences $r(\beta)$ are not always log-concave, e.g. $r(1,1): 1,2,1,1$.

The sequences $\bar{r}(\beta)$ can be unimodal but not log-concave, e.g. $\bar{r}(1,1,1,1,1,1): 1,3,3,4,3,1$.

Open problems

For any poset P, denote by $L(P)$ its lattice of order ideals.

Question 4

What conditions on P imply that the rank sequence of $L(P)$ satisfies conditions such as symmetry, unimodality, etc.?

Open problems

For any poset P, denote by $L(P)$ its lattice of order ideals.

Question 4

What conditions on P imply that the rank sequence of $L(P)$ satisfies conditions such as symmetry, unimodality, etc.?

THE END

- Elizalde and Sagan, Partial rank symmetry of distributive lattices for fences, arXiv:2201.03044.
- Elizalde, Plante, Roby and Sagan, Rowmotion on fences, arXiv:2108.12443.

