Partial rank symmetry of distributive lattices for fences

Sergi Elizalde (joint work with Bruce Sagan)

Dartmouth College

University of Minnesota Combinatorics Seminar April 22, 2022

Fence posets

Let $\beta = (\beta_1, \beta_2, \dots, \beta_s)$ with $\beta_i \ge 1$ for all i.

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_1, \beta_2, \ldots, \beta_s$, where the *i*th and (i + 1)st chains share their maximum element if *i* is odd, and they share their minimum element if *i* is even.

Fence posets

Let
$$\beta = (\beta_1, \beta_2, \dots, \beta_s)$$
 with $\beta_i \ge 1$ for all *i*.

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_1, \beta_2, \ldots, \beta_s$, where the *i*th and (i + 1)st chains share their maximum element if *i* is odd, and they share their minimum element if *i* is even.

The *i*th chain is called an *ascending segment* if *i* is odd, and a *descending segment* if *i* is even.

Fence posets

Let
$$\beta = (\beta_1, \beta_2, \dots, \beta_s)$$
 with $\beta_i \ge 1$ for all *i*.

Definition

The fence $F(\beta)$ is the poset consisting of chains of lengths $\beta_1, \beta_2, \ldots, \beta_s$, where the *i*th and (i + 1)st chains share their maximum element if *i* is odd, and they share their minimum element if *i* is even.

The *i*th chain is called an *ascending segment* if *i* is odd, and a *descending segment* if *i* is even. Let $n = |F(\beta)| = \beta_1 + \cdots + \beta_s + 1$.

Lower order ideals

A *lower order ideal* of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.

Lower order ideals

A *lower order ideal* of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.

Let $L(\beta)$ be the distributive lattice of lower order ideals of $F(\beta)$, ordered by containment.

Sergi Elizalde Partial rank symmetry of distributive lattices for fences

Lower order ideals

A *lower order ideal* of a poset is a subset I satisfying that if $x \in I$ and $y \leq x$, then $y \in I$.

Let $L(\beta)$ be the distributive lattice of lower order ideals of $F(\beta)$, ordered by containment.

Sergi Elizalde Partial rank symmetry of distributive lattices for fences

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler–Thomas '09, Musiker –Schiffler–Williams '11, Yurikusa '19, Claussen '20, Propp '20].

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler–Thomas '09, Musiker –Schiffler–Williams '11, Yurikusa '19, Claussen '20, Propp '20].

Since $L(\beta)$ is ranked, it has an associated rank sequence

 $r(\beta)$: r_0, r_1, \ldots, r_n

where

 r_k = number of elements at rank k in $L(\beta)$ = number of ideals of $F(\beta)$ of size k.

The lattices $L(\beta)$

The lattices $L(\beta)$ can be used to calculate the mutations in a cluster algebra derived from a surface with marked points on the boundary [Schiffler '08 '10, Schiffler–Thomas '09, Musiker –Schiffler–Williams '11, Yurikusa '19, Claussen '20, Propp '20].

Since $L(\beta)$ is ranked, it has an associated rank sequence

 $r(\beta)$: r_0, r_1, \ldots, r_n

where

$$r_k =$$
 number of elements at rank k in $L(\beta)$
= number of ideals of $F(\beta)$ of size k.

The corresponding rank generating functions

$$r(q;\beta) = \sum_{k=0}^{n} r_k q^k$$

were used by Morier-Genoud and Ovsienko '20 to define *q*-analogues of rational and real numbers.

The rank generating function: example

The rank generating function: example

r(2,2,1):1,2,4,4,3,2,1

ergi Elizalde Partial rank symmetry of distributive lattices for fences

The rank generating function: a larger example

For $\beta = (4, 3, 2, 1, 5)$, we have

 $r(\beta)$: 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1

The rank generating function: a larger example

For $\beta = (4, 3, 2, 1, 5)$, we have

 $r(\beta): 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1$

Definition

A sequence r_0, r_1, \ldots, r_n is unimodal if there is an index *m* such that

 $r_0 \leq r_1 \leq \ldots \leq r_m \geq r_{m+1} \geq \ldots \geq r_n.$

The rank generating function: a larger example

For $\beta = (4, 3, 2, 1, 5)$, we have

 $r(\beta): 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1$

Definition

A sequence r_0, r_1, \ldots, r_n is unimodal if there is an index *m* such that

$$r_0 \leq r_1 \leq \ldots \leq r_m \geq r_{m+1} \geq \ldots \geq r_n.$$

Conjecture (Morier-Genoud, Ovsienko '20)

For all β , the sequence $r(\beta)$ is unimodal.

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,
 - top heavy if $r_k \leq r_{n-k}$ for $0 \leq k < \lfloor n/2 \rfloor$,

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,
 - top heavy if $r_k \leq r_{n-k}$ for $0 \leq k < \lfloor n/2 \rfloor$,
 - bottom heavy if $r_k \ge r_{n-k}$ for $0 \le k < \lfloor n/2 \rfloor$,

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,
 - top heavy if $r_k \leq r_{n-k}$ for $0 \leq k < \lfloor n/2 \rfloor$,
 - bottom heavy if $r_k \ge r_{n-k}$ for $0 \le k < \lfloor n/2 \rfloor$,
 - top interlacing if $r_0 \leq r_n \leq r_1 \leq r_{n-1} \leq \ldots \leq r_{\lceil n/2 \rceil}$,

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,
 - top heavy if $r_k \leq r_{n-k}$ for $0 \leq k < \lfloor n/2 \rfloor$,
 - bottom heavy if $r_k \ge r_{n-k}$ for $0 \le k < \lfloor n/2 \rfloor$,
 - top interlacing if $r_0 \leq r_n \leq r_1 \leq r_{n-1} \leq \ldots \leq r_{\lceil n/2 \rceil}$,
 - bottom interlacing if $r_n \leq r_0 \leq r_{n-1} \leq r_1 \leq \ldots \leq r_{\lfloor n/2 \rfloor}$.

Definition

- A sequence r_0, r_1, \ldots, r_n is
 - symmetric if $r_k = r_{n-k}$ for $0 \le k \le n$,
 - top heavy if $r_k \leq r_{n-k}$ for $0 \leq k < \lfloor n/2 \rfloor$,
 - bottom heavy if $r_k \ge r_{n-k}$ for $0 \le k < \lfloor n/2 \rfloor$,
 - top interlacing if $r_0 \leq r_n \leq r_1 \leq r_{n-1} \leq \ldots \leq r_{\lceil n/2 \rceil}$,
 - bottom interlacing if $r_n \leq r_0 \leq r_{n-1} \leq r_1 \leq \ldots \leq r_{\lfloor n/2 \rfloor}$.

top interlacing \implies top heavy and unimodal bottom interlacing \implies bottom heavy and unimodal

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let $\beta = (\beta_1, \ldots, \beta_s)$.

- If s = 1 then $r(\beta) = (1, 1, ..., 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \ge 3$ is odd and let $\beta' = (\beta_2, \dots, \beta_{s-1})$.
 - If $\beta_1 > \beta_s$ then $r(\beta)$ is bottom interlacing.
 - If $\beta_1 < \beta_s$ then $r(\beta)$ is top interlacing.
 - If β₁ = β_s then r(β) is symmetric, bottom interlacing, or top interlacing depending on whether r(β') is symmetric, top interlacing, or bottom interlacing, respectively.

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let
$$\beta = (\beta_1, \ldots, \beta_s)$$
.

- If s = 1 then $r(\beta) = (1, 1, ..., 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \ge 3$ is odd and let $\beta' = (\beta_2, \dots, \beta_{s-1})$.
 - If $\beta_1 > \beta_s$ then $r(\beta)$ is bottom interlacing.
 - If $\beta_1 < \beta_s$ then $r(\beta)$ is top interlacing.
 - If β₁ = β_s then r(β) is symmetric, bottom interlacing, or top interlacing depending on whether r(β') is symmetric, top interlacing, or bottom interlacing, respectively.

Theorem (Oğuz and Ravichandran '21)

The above conjectures are true.

A refined conjecture

Conjecture (McConville, Sagan, Smyth '21)

Let
$$\beta = (\beta_1, \ldots, \beta_s)$$
.

- If s = 1 then $r(\beta) = (1, 1, ..., 1)$.
- If s is even, then $r(\beta)$ is bottom interlacing.
- Suppose $s \ge 3$ is odd and let $\beta' = (\beta_2, \dots, \beta_{s-1})$.
 - If $\beta_1 > \beta_s$ then $r(\beta)$ is bottom interlacing.
 - If $\beta_1 < \beta_s$ then $r(\beta)$ is top interlacing.
 - If β₁ = β_s then r(β) is symmetric, bottom interlacing, or top interlacing depending on whether r(β') is symmetric, top interlacing, or bottom interlacing, respectively.

Theorem (Oğuz and Ravichandran '21)

The above conjectures are true.

The proof uses induction and algebraic manipulation, as well as a circular version of fences.

In general, the sequence $r(\beta)$ is not symmetric, but we will show that it is exhibits partial symmetry.

Theorem

Suppose that $\beta = (\beta_1, \beta_2, ..., \beta_s)$ where s is odd. Then, for all $k \leq \min{\{\beta_1, \beta_s\}}$ we have

$$r_k = r_{n-k}$$
.

In general, the sequence $r(\beta)$ is not symmetric, but we will show that it is exhibits partial symmetry.

Theorem

Suppose that $\beta = (\beta_1, \beta_2, ..., \beta_s)$ where s is odd. Then, for all $k \leq \min{\{\beta_1, \beta_s\}}$ we have

$$r_k = r_{n-k}$$
.

Example

For $\beta = (4, 3, 2, 1, 5)$, we have

 $r(\beta): 1, 3, 7, 13, 21, 29, 37, 42, 45, 44, 38, 30, 21, 13, 7, 3, 1$

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean *lower order ideal*, and filter to mean *upper order ideal*.

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean *lower order ideal*, and filter to mean *upper order ideal*.

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$ with an odd number of parts.

$$\mathcal{I}_k(\beta) = \text{ ideals of } F(\beta) \text{ of size } k$$

 $\mathcal{U}_k(\beta) = \text{ filters of } F(\beta) \text{ of size } k$

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean *lower order ideal*, and filter to mean *upper order ideal*.

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$ with an odd number of parts.

$$\mathcal{I}_k(\beta) = \text{ ideals of } F(\beta) \text{ of size } k$$

 $\mathcal{U}_k(\beta) = \text{ filters of } F(\beta) \text{ of size } k$

We have $|\mathcal{I}_k(\beta)| = r_k$ and $|\mathcal{U}_k(\beta)| = r_{n-k}$.

An upper order ideal of a poset is a subset U satisfying that if $x \in U$ and $x \leq y$, then $y \in U$.

We will use ideal to mean *lower order ideal*, and filter to mean *upper order ideal*.

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$ with an odd number of parts.

$$\mathcal{I}_k(\beta) = \text{ ideals of } F(\beta) \text{ of size } k$$

 $\mathcal{U}_k(\beta) = \text{ filters of } F(\beta) \text{ of size } k$

We have $|\mathcal{I}_k(\beta)| = r_k$ and $|\mathcal{U}_k(\beta)| = r_{n-k}$.

To give a bijective proof of our main result, we will construct a bijection

$$\Phi: \mathcal{I}_k(\beta) \to \mathcal{U}_k(\beta)$$

for all $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$.

A gate is obtained by removing the first and last segments of a fence, and requiring ascending segments to have length one.

A simpler case: gates

A gate is obtained by removing the first and last segments of a fence, and requiring ascending segments to have length one.

For a composition $\delta = (\delta_1, \delta_2, \dots, \delta_\ell)$, define the gate

$$G(\delta) = F(\delta_1, 1, \delta_2, 1, \ldots, \delta_{\ell-1}, 1, \delta_\ell)^*,$$

where * indicates poset dual.

Restricted ideals of gates

Let D_1, \ldots, D_ℓ be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $|I \cap D_1| < |D_1|$ and $|I \cap D_\ell| \neq 1$.

Restricted ideals of gates

Let D_1, \ldots, D_ℓ be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $|I \cap D_1| < |D_1|$ and $|I \cap D_\ell| \neq 1$.

A filter U of $G(\delta)$ is restricted if $|U \cap D_1| \neq 1$ and $|U \cap D_\ell| < |D_\ell|$.

Restricted ideals of gates

Let D_1, \ldots, D_ℓ be the descending segments of $G(\delta)$ from left to right.

Definition

An ideal I of $G(\delta)$ is restricted if $|I \cap D_1| < |D_1|$ and $|I \cap D_\ell| \neq 1$.

A filter U of $G(\delta)$ is restricted if $|U \cap D_1| \neq 1$ and $|U \cap D_\ell| < |D_\ell|$.

We will describe a cardinality-preserving bijection

 $\phi : \{ \text{restricted ideals of } G(\delta) \} \rightarrow \{ \text{restricted filters of } G(\delta) \}.$
Encoding restricted ideals/filters of gates

A restricted ideal *I* of $G(\delta)$ can be encoded by a sequence d_1, d_2, \ldots, d_ℓ , where $d_i = |I \cap D_i|$.

Encoding restricted ideals/filters of gates

A restricted ideal *I* of $G(\delta)$ can be encoded by a sequence d_1, d_2, \ldots, d_ℓ , where $d_i = |I \cap D_i|$.

Such sequences can be characterized as those satisfying:

Encoding restricted ideals/filters of gates

A restricted ideal I of $G(\delta)$ can be encoded by a sequence $d_1, d_2, \ldots, d_{\ell}$, where $d_i = |I \cap D_i|$.

Such sequences can be characterized as those satisfying:

● for
$$i \in [\ell]$$
, we have $0 \le d_i \le |D_i|$,
● for $i \in [2, \ell]$, if $d_i = |D_i|$ then $d_{i-1} > 0$,
● $d_1 < |D_1|$ and $d_\ell \ne 1$.

Similarly, a restricted filter U of $G(\delta)$ can be encoded by a sequence e_1, e_2, \ldots, e_ℓ , where $e_i = |U \cap D_i|$, characterized by similar conditions.

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

6, 1, 1, 1, 0, 4, 5, 1, 1, 0, 0, 3, 1, 2

Sergi Elizalde Partial rank symmetry of distributive lattices for fences

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

 For each maximal block (consecutive subsequence) B of positive integers,

$\begin{array}{c} 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \end{array}$

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

For each maximal block (consecutive subsequence) B of positive integers, factor it as B = B'T, where T is the maximal suffix consisting of 1s.

 $\begin{array}{c} 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2 \end{array}$

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

- For each maximal block (consecutive subsequence) B of positive integers, factor it as B = B'T, where T is the maximal suffix consisting of 1s.
- **②** For each nonempty T, exchange T with the 0 to its right.

$$\begin{array}{c} 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,0,1,1,1,4,5,0,1,1,0,3,1,2 \end{array}$$

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

- For each maximal block (consecutive subsequence) B of positive integers, factor it as B = B'T, where T is the maximal suffix consisting of 1s.
- **②** For each nonempty T, exchange T with the 0 to its right.
- So For each B' with |B'| ≥ 2, decrease its rightmost entry by 1 and increase its leftmost entry by 1.

 $\begin{array}{c} 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,0,1,1,1,4,5,0,1,1,0,3,1,2\\ 6,0,1,1,1,5,4,0,1,1,0,4,1,1 \end{array}$

Given a sequence d_1, d_2, \ldots, d_ℓ encoding a restricted ideal *I*:

- For each maximal block (consecutive subsequence) B of positive integers, factor it as B = B'T, where T is the maximal suffix consisting of 1s.
- **②** For each nonempty T, exchange T with the 0 to its right.
- So For each B' with |B'| ≥ 2, decrease its rightmost entry by 1 and increase its leftmost entry by 1.

The resulting sequence encodes a restricted filter $\phi(I)$.

 $\begin{array}{c} 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,1,1,1,0,4,5,1,1,0,0,3,1,2\\ 6,0,1,1,1,4,5,0,1,1,0,3,1,2\\ 6,0,1,1,1,5,4,0,1,1,0,4,1,1\\ 6,0,1,1,1,5,4,0,1,1,0,4,1,1 \end{array}$

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$, and let $F = F(\beta)$.

Ascending segments: $A_1, A_2, \ldots, A_{\ell+1}$. Descending segments: D_1, D_2, \ldots, D_ℓ .

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$, and let $F = F(\beta)$.

Ascending segments: $A_1, A_2, \ldots, A_{\ell+1}$. Descending segments: D_1, D_2, \ldots, D_ℓ .

Let \tilde{A}_i be obtained from A_i by removing the elements shared with descending segments, so that each element appears in exactly one of the \tilde{A}_i or D_i .

Fix $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell+1})$, and let $F = F(\beta)$.

Ascending segments: $A_1, A_2, \ldots, A_{\ell+1}$. Descending segments: D_1, D_2, \ldots, D_ℓ .

Let \tilde{A}_i be obtained from A_i by removing the elements shared with descending segments, so that each element appears in exactly one of the \tilde{A}_i or D_i .

We encode ideals I of F as arrays of numbers

We encode ideals I of F as arrays of numbers

Sergi Elizalde Partial rank symmetry of distributive lattices for fences

We encode ideals I of F as arrays of numbers

Such an array encodes an ideal of F if and only if:

- for $i \in [\ell + 1]$ we have $0 \le a_i \le |\tilde{A}_i|$,
- ② for $i \in [\ell]$ we have $0 \le d_i \le |D_i|$,
- So for *i* ∈ [ℓ], if $d_i = |D_i|$ then $a_i = |\tilde{A}_i|$, and if *i* > 1 then $d_{i-1} > 0$ as well,

• for
$$i \in [\ell]$$
, if $a_{i+1} > 0$ then $d_i > 0$.

Such an array encodes an ideal of F if and only if:

1 for
$$i \in [\ell + 1]$$
 we have $0 \le a_i \le | ilde{A}_i|$,

2) for
$$i \in [\ell]$$
 we have $0 \le d_i \le |D_i|$,

③ for *i* ∈ [
$$\ell$$
], if *d_i* = |*D_i*| then *a_i* = | \tilde{A}_i |, and if *i* > 1 then *d_i*−1 > 0 as well,

• for
$$i \in [\ell]$$
, if $a_{i+1} > 0$ then $d_i > 0$.

1

Similarly, we encode filters U of F as arrays of numbers

where $b_i = |U \cap \tilde{A}_i|$ and $e_i = |U \cap D_i|$ for all *i*.

Such arrays can be characterized by similar conditions.

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$.

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$. Suppose that $I \in \mathcal{I}_k(F)$ is encoded by an array

• For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$. Suppose that $I \in \mathcal{I}_k(F)$ is encoded by an array

• For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- ② Decompose d_1, d_2, \ldots, d_ℓ into factors by splitting between d_{i-1} and d_i for each $i \in [2, \ell]$ such that $a_i < |\tilde{A}_i|$.

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- ② Decompose d₁, d₂,..., d_ℓ into factors by splitting between d_{i−1} and d_i for each i ∈ [2, ℓ] such that a_i < |Ã_i|. Apply φ from before to each factor

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- ② Decompose d₁, d₂, ..., d_ℓ into factors by splitting between d_{i-1} and d_i for each i ∈ [2, ℓ] such that a_i < |Ã_i|. Apply φ from before to each factor to obtain a sequence e. Let b := a.

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$. Suppose that $I \in \mathcal{I}_k(F)$ is encoded by an array

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- **2** Decompose d_1, d_2, \ldots, d_ℓ into factors by splitting between d_{i-1} and d_i for each $i \in [2, \ell]$ such that $a_i < |\tilde{A}_i|$. Apply ϕ from before to each factor to obtain a sequence e. Let b := a.
- So For every i s.t. $b_i > 0$ and $e_i = 0$, let $b_i := b_i 1$ and $e_i := 1$.

for fences

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$. Suppose that $I \in \mathcal{I}_k(F)$ is encoded by an array

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- ② Decompose d₁, d₂, ..., d_ℓ into factors by splitting between d_{i-1} and d_i for each i ∈ [2, ℓ] such that a_i < |Ã_i|. Apply φ from before to each factor to obtain a sequence e. Let b := a.
- So For every i s.t. $b_i > 0$ and $e_i = 0$, let $b_i := b_i 1$ and $e_i := 1$.

lattices for fences

Next we define $\Phi : \mathcal{I}_k(F) \to \mathcal{U}_k(F)$, where $k \leq \min\{\beta_1, \beta_{2\ell+1}\}$. Suppose that $I \in \mathcal{I}_k(F)$ is encoded by an array

a ₁		a_2		• • •		a_ℓ		$a_{\ell+1}$
	d_1		d_2		•••		d_ℓ	

- For every *i* s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- Decompose d₁, d₂, ..., d_ℓ into factors by splitting between d_{i-1} and d_i for each i ∈ [2, ℓ] such that a_i < |Ã_i|. Apply φ from before to each factor to obtain a sequence e. Let b := a.
 For every i s.t. b_i > 0 and e_i = 0, let b_i := b_i − 1 and e_i := 1.

The resulting array encodes the filter $\Phi(I)$.

Example of Φ

Example of Φ

Example of Φ

The inverse Φ^{-1} is essentially Φ conjugated with 180° rotation.

Oğuz and Ravichandran's proof of the (refined) unimodality of the sequences $r(\beta)$ relies on so-called circular fences.

Oğuz and Ravichandran's proof of the (refined) unimodality of the sequences $r(\beta)$ relies on so-called circular fences.

Let $\beta = (\beta_1, \beta_2, \dots, \beta_s)$, where s is even.

Definition

The circular fence $\overline{F}(\beta)$ is obtained by identifying the leftmost and the rightmost elements of $F(\beta)$.

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence.

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence.

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence. $\underline{r_k}$

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence.

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\overline{r}(\beta)$ is symmetric.
Rank symmetry for circular fences

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence.

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\overline{r}(\beta)$ is symmetric.

The proof uses algebraic manipulation of recurrence relations.

Rank symmetry for circular fences

Let $\overline{L}(\beta)$ be the distributive lattice of lower order ideals of $\overline{F}(\beta)$, ordered by containment, and let $\overline{r}(\beta)$ be its rank sequence.

Theorem (Oğuz and Ravichandran '21)

For every circular fence, the sequence $\overline{r}(\beta)$ is symmetric.

The proof uses algebraic manipulation of recurrence relations. We will give a bijective proof by modifying our bijection for fences.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

$$\overline{\Phi}$$
: {ideals of $\overline{F}(\beta)$ } \rightarrow {filters of $\overline{F}(\beta)$ }.

Ideals and filters of circular fences: easier case

We want a cardinality-preserving bijection

$$\overline{\Phi}$$
 : {ideals of $\overline{F}(\beta)$ } \rightarrow {filters of $\overline{F}(\beta)$ }.

First consider the case where ascending segments have length 1. Let $\beta = (1, \delta_1, 1, \delta_2, \dots, 1, \delta_\ell)$, and let D_1, \dots, D_ℓ be the descending segments of $\overline{F}(\beta)$.

We want a cardinality-preserving bijection

$$\overline{\Phi}$$
 : {ideals of $\overline{F}(\beta)$ } \rightarrow {filters of $\overline{F}(\beta)$ }.

First consider the case where ascending segments have length 1. Let $\beta = (1, \delta_1, 1, \delta_2, \dots, 1, \delta_\ell)$, and let D_1, \dots, D_ℓ be the descending segments of $\overline{F}(\beta)$.

An ideal *I* of $\overline{F}(\beta)$ can be encoded by a sequence d_1, d_2, \ldots, d_ℓ , where $d_i = |I \cap D_i|$, satisfying:

- for $i \in [\ell]$ we have $0 \le d_i \le |D_i|$,
- ② for *i* ∈ [ℓ], if $d_i = |D_i|$ then $d_{i-1} > 0$, with subscripts modulo ℓ.

We want a cardinality-preserving bijection

$$\overline{\Phi}$$
: {ideals of $\overline{F}(\beta)$ } \rightarrow {filters of $\overline{F}(\beta)$ }.

First consider the case where ascending segments have length 1. Let $\beta = (1, \delta_1, 1, \delta_2, \dots, 1, \delta_\ell)$, and let D_1, \dots, D_ℓ be the descending segments of $\overline{F}(\beta)$.

An ideal *I* of $\overline{F}(\beta)$ can be encoded by a sequence d_1, d_2, \ldots, d_ℓ , where $d_i = |I \cap D_i|$, satisfying:

• for
$$i \in [\ell]$$
 we have $0 \le d_i \le |D_i|$,

② for *i* ∈ [ℓ], if $d_i = |D_i|$ then $d_{i-1} > 0$, with subscripts modulo ℓ.

Similarly, a filter U of $\overline{F}(\beta)$ can be encoded by a sequence e_1, e_2, \ldots, e_ℓ , where $e_i = |U \cap D_i|$, satisfying analogous conditions.

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent.

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal *I*, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal *I*, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If all the entries of $\langle d \rangle$ are positive, do nothing.

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

- If all the entries of $\langle d \rangle$ are positive, do nothing. Otherwise:
 - For each maximal block B of positive integers in $\langle d \rangle$,

 $\begin{array}{l} \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \end{array}$

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If all the entries of $\langle d \rangle$ are positive, do nothing. Otherwise:

• For each maximal block *B* of positive integers in $\langle d \rangle$, factor it as B = B'T, where *T* is the maximal suffix consisting of 1s.

$$\begin{array}{l} \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \end{array}$$

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If all the entries of $\langle d \rangle$ are positive, do nothing. Otherwise:

- For each maximal block *B* of positive integers in $\langle d \rangle$, factor it as B = B'T, where *T* is the maximal suffix consisting of 1s.
- **2** For each nonempty T, exchange T with the 0 to its right.

$$\begin{array}{l} \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,0,1,1,5,0,1,0,3\rangle \end{array}$$

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If all the entries of $\langle d \rangle$ are positive, do nothing. Otherwise:

- For each maximal block *B* of positive integers in $\langle d \rangle$, factor it as B = B'T, where *T* is the maximal suffix consisting of 1s.
- **②** For each nonempty T, exchange T with the 0 to its right.
- So For each B' with |B'| ≥ 2, decrease its last entry by 1 and increase its first entry by 1.

```
\begin{array}{l} \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,1,1,0,5,1,0,0,3\rangle \\ \langle 7,0,1,1,5,0,1,0,3\rangle \\ \langle 6,0,1,1,5,0,1,0,4\rangle \end{array}
```

If $d: d_1, d_2, \ldots, d_\ell$ encodes an ideal I, denote by $\langle d \rangle$ the circular sequence with subscripts taken modulo ℓ , so that d_ℓ and d_1 are considered adjacent. Next we define $\overline{\phi}(I)$.

If all the entries of $\langle d \rangle$ are positive, do nothing. Otherwise:

- For each maximal block *B* of positive integers in $\langle d \rangle$, factor it as B = B'T, where *T* is the maximal suffix consisting of 1s.
- **②** For each nonempty T, exchange T with the 0 to its right.
- So For each B' with |B'| ≥ 2, decrease its last entry by 1 and increase its first entry by 1.

The resulting sequence encodes the filter $\overline{\phi}(I)$.

```
\begin{array}{l} \langle 7,1,1,0,5,1,0,0,3\rangle\\ \langle 7,1,1,0,5,1,0,0,3\rangle\\ \langle 7,1,1,0,5,1,0,0,3\rangle\\ \langle 7,0,1,1,5,0,1,0,3\rangle\\ \langle 6,0,1,1,5,0,1,0,4\rangle\\ \langle 6,0,1,1,5,0,1,0,4\rangle \end{array}
```

Sergi Elizalde

Partial rank symmetry of distributive lattices for fences

Consider now the general case, where $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell})$.

Consider now the general case, where $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell})$.

Ascending segments with shared elements removed: $\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_1, D_2, \ldots, D_{\ell}$.

Consider now the general case, where $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell})$.

Ascending segments with shared elements removed: $\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_1, D_2, \ldots, D_{\ell}$.

An ideal I of $\overline{F}(\beta)$ can be encoded by an array

where $a_i = |I \cap \tilde{A}_i|$ and $d_i = |I \cap D_i|$,

Consider now the general case, where $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell})$.

Ascending segments with shared elements removed: $\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_1, D_2, \ldots, D_{\ell}$.

An ideal I of $\overline{F}(\beta)$ can be encoded by an array

where
$$a_i = |I \cap \tilde{A}_i|$$
 and $d_i = |I \cap D_i|$, satisfying:
a) for $i \in [\ell]$ we have $0 \le a_i \le |\tilde{A}_i|$,
a) for $i \in [\ell]$ we have $0 \le d_i \le |D_i|$,
b) for $i \in [\ell]$, if $d_i = |D_i|$ then $a_i = |\tilde{A}_i|$ and $d_{i-1} > 0$,
c) for $i \in [\ell]$, if $a_i > 0$ then $d_{i-1} > 0$,
c) with subscripts modulo ℓ .

Consider now the general case, where $\beta = (\beta_1, \beta_2, \dots, \beta_{2\ell})$.

Ascending segments with shared elements removed: $\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_{\ell}$. Descending segments: $D_1, D_2, \ldots, D_{\ell}$.

An ideal I of $\overline{F}(\beta)$ can be encoded by an array

where
$$a_i = |I \cap \tilde{A}_i|$$
 and $d_i = |I \cap D_i|$, satisfying:
a) for $i \in [\ell]$ we have $0 \le a_i \le |\tilde{A}_i|$,
a) for $i \in [\ell]$ we have $0 \le d_i \le |D_i|$,
b) for $i \in [\ell]$, if $d_i = |D_i|$ then $a_i = |\tilde{A}_i|$ and $d_{i-1} > 0$,
b) for $i \in [\ell]$, if $a_i > 0$ then $d_{i-1} > 0$,
b) with subscripts modulo ℓ .

A filter of $\overline{F}(\beta)$ can be encoded similarly.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array $a_1 \qquad a_2 \qquad \cdots \qquad a_\ell \qquad a_1$ $d_1 \qquad d_2 \qquad \cdots \qquad d_\ell$

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array $a_1 \qquad a_2 \qquad \cdots \qquad a_\ell \qquad a_1$ $d_1 \qquad d_2 \qquad \cdots \qquad d_\ell$

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

$$a_1 \quad a_2 \quad \cdots \quad a_\ell \quad a_1 \ d_1 \quad d_2 \quad \cdots \quad d_\ell$$

We perform the following operations, with subscripts modulo ℓ :

• For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

$$a_1 \quad a_2 \quad \cdots \quad a_\ell \quad a_1 \ d_1 \quad d_2 \quad \cdots \quad d_\ell$$

We perform the following operations, with subscripts modulo ℓ :

• For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with $a_i < |\tilde{A}_i|$, split $\langle d \rangle$ into linear factors between d_{i-1} and d_i for each such *i*,

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- ② If there exists *i* with $a_i < |\tilde{A}_i|$, split ⟨*d*⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply ϕ to each factor.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with a_i < |Ã_i|, split ⟨d⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply φ to each factor. If no such *i* exists, apply the previous map φ to ⟨d⟩.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with a_i < |Ã_i|, split ⟨d⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply φ to each factor. If no such *i* exists, apply the previous map φ to ⟨d⟩. In both cases, let *e* be the resulting sequence. Let b := a.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with a_i < |Ã_i|, split ⟨d⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply φ to each factor. If no such *i* exists, apply the previous map φ to ⟨d⟩. In both cases, let *e* be the resulting sequence. Let b := a.
 For every *i* ∈ [ℓ] s.t. b_i > 0 & e_i = 0, let b_i := b_i-1 & e_i := 1.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with a_i < |Ã_i|, split ⟨d⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply φ to each factor. If no such *i* exists, apply the previous map φ to ⟨d⟩. In both cases, let *e* be the resulting sequence. Let b := a.
 For every *i* ∈ [ℓ] s.t. b_i > 0 & e_i = 0, let b_i := b_i-1 & e_i := 1.

Suppose that an ideal I of $\overline{F}(\beta)$ is encoded by an array

- For every $i \in [\ell]$ s.t. $d_i = 1$ and $a_{i+1} < |\tilde{A}_{i+1}|$, let $d_i := 0$ and $a_{i+1} := a_{i+1} + 1$.
- If there exists *i* with a_i < |A_i|, split ⟨d⟩ into linear factors between d_{i-1} and d_i for each such *i*, and apply φ to each factor. If no such *i* exists, apply the previous map φ to ⟨d⟩. In both cases, let *e* be the resulting sequence. Let b := a.
 For every *i* ∈ [ℓ] s.t. b_i > 0 & e_i = 0, let b_i := b_i-1 & e_i := 1. The resulting array encodes a filter Φ(1).

Example of $\overline{\Phi}$

Example of $\overline{\Phi}$

Example of $\overline{\Phi}$

The inverse map $\overline{\Phi}^{-1}$ can be described by applying $\overline{\Phi}$ to the horizontal reflection of the arrays.

antichains

Sergi Elizalde

Partial rank symmetry of distributive lattices for fences

Sergi Elizalde

Partial rank symmetry of distributive lattices for fences

Given a set S and a bijection $\rho: S \to S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

By definition, homomesic implies homometric.

Given a set S and a bijection $\rho: S \to S$, a statistic on S is called homomesic under the action of ρ if its average over each orbit is the same.

A statistic on S is called homometric under the action of ρ if its average over orbits of the same size is the same.

By definition, homomesic implies homometric.

For an antichain A, define the stiatistic $\chi_A(A) = |A|$.

For an ideal *I*, define the stiatistic $\chi_{\mathcal{I}}(I) = |I|$.

Theorem (E.–Plante–Roby–Sagan '21)

For fences with two segments F(a - 1, b - 1):

rowmotion has gcd(a, b) orbits, of which all have size lcm(a, b) except for one that has size lcm(a, b) + 1.

Theorem (E.–Plante–Roby–Sagan '21)

For fences with two segments F(a - 1, b - 1):

- rowmotion has gcd(a, b) orbits, of which all have size lcm(a, b) except for one that has size lcm(a, b) + 1.
- the statistic χ_A is homometric under the action of ρ_A ,
- the statistic $\chi_{\mathcal{I}}$ is homometric under the action of $\rho_{\mathcal{I}}$.

Theorem (E.–Plante–Roby–Sagan '21)

For fences of the form F(a, b, a):

- the statistic χ_A is homometric under the action of ρ_A ,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

Theorem (E.–Plante–Roby–Sagan '21)

For fences of the form F(a, b, a):

- the statistic χ_A is homometric under the action of ρ_A ,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

The proof relies on a certain encoding of the orbits as tilings:

Theorem (E.–Plante–Roby–Sagan '21)

For fences of the form F(a, b, a):

- the statistic χ_A is homometric under the action of ρ_A ,
- the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

The proof relies on a certain encoding of the orbits as tilings:

Conjecture (E.–Plante–Roby–Sagan '21)

For fences of the form $F(a-1, a, a, \dots, a, a-1)$:

- the statistic $\chi_{\mathcal{A}}$ is homometric under the action of $\rho_{\mathcal{A}}$,
- if the number of segments is odd, the statistic $\chi_{\mathcal{I}}$ is homomesic under the action of $\rho_{\mathcal{I}}$.

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

In the case of circular fences $\overline{F}(\beta)$, unimodality of $\overline{r}(\beta)$ does not always hold, but it often does.

Conjecture (Oğuz–Ravichandran '21)

Assuming β has an even number of parts, $\overline{r}(\beta)$ is unimodal except when $\beta = (1, k, 1, k)$ or $\beta = (k, 1, k, 1)$ for some $k \ge 1$.

For fences $F(\beta)$, Oğuz and Ravichandran proved recursively that the sequences $r(\beta)$ are unimodal and, more strongly, bottom or top interlacing depending on the case.

Question 1

Can one modify the bijection Φ to give an injective proof?

In the case of circular fences $\overline{F}(\beta)$, unimodality of $\overline{r}(\beta)$ does not always hold, but it often does.

Conjecture (Oğuz–Ravichandran '21)

Assuming β has an even number of parts, $\overline{r}(\beta)$ is unimodal except when $\beta = (1, k, 1, k)$ or $\beta = (k, 1, k, 1)$ for some $k \ge 1$.

Question 2

Can this be proved by modifying the bijection $\overline{\Phi}$?

Recall that a_0, a_1, \ldots, a_n is log-concave if

$$a_i^2 \geq a_{i-1}a_{i+1}$$

for all 0 < i < n. For positive sequences, this condition implies unimodality.

Recall that a_0, a_1, \ldots, a_n is log-concave if

$$a_i^2 \geq a_{i-1}a_{i+1}$$

for all 0 < i < n. For positive sequences, this condition implies unimodality.

Question 3

For which β are $r(\beta)$ or $\overline{r}(\beta)$ log-concave?

Recall that a_0, a_1, \ldots, a_n is log-concave if

$$a_i^2 \geq a_{i-1}a_{i+1}$$

for all 0 < i < n. For positive sequences, this condition implies unimodality.

Question 3

For which β are $r(\beta)$ or $\overline{r}(\beta)$ log-concave?

The sequences $r(\beta)$ are not always log-concave, e.g. r(1,1): 1, 2, 1, 1.

The sequences $\overline{r}(\beta)$ can be unimodal but not log-concave, e.g. $\overline{r}(1, 1, 1, 1, 1, 1) : 1, 3, 3, 4, 3, 1$.

For any poset P, denote by L(P) its lattice of order ideals.

Question 4

What conditions on P imply that the rank sequence of L(P) satisfies conditions such as symmetry, unimodality, etc.?

For any poset P, denote by L(P) its lattice of order ideals.

Question 4

What conditions on P imply that the rank sequence of L(P) satisfies conditions such as symmetry, unimodality, etc.?

THE END

- Elizalde and Sagan, Partial rank symmetry of distributive lattices for fences, arXiv:2201.03044.
- Elizalde, Plante, Roby and Sagan, Rowmotion on fences, arXiv:2108.12443.