A bijection between 2-triangulations and pairs of non-crossing Dyck paths

Sergi Elizalde
sergi.elizalde@dartmouth.edu
Dartmouth College

Let \mathfrak{C}_{n} be a regular n-gon.
A triangulation of \mathfrak{C}_{n} is a subdivision of \mathfrak{C}_{n} into triangles, using diagonals that do not cross.

- Every triangulation of \mathfrak{C}_{n} has exactly $n-3$ diagonals.
- The number of triangulations of \mathfrak{C}_{n} is

$$
C_{n-2}=\frac{1}{n-1}\binom{2 n-4}{n-2}
$$

where C_{m} is the m-th Catalan number.

Dyck paths

A Dyck path is a lattice path from $(0,0)$ to a point on the diagonal $y=x$ with steps $N=(0,1)$ and $E=(1,0)$ that never goes below this diagonal.

Dyck paths

A Dyck path is a lattice path from $(0,0)$ to a point on the diagonal $y=x$ with steps $N=(0,1)$ and $E=(1,0)$ that never goes below this diagonal.

If (m, m) is the final point, we call m the size of the path.
Let \mathcal{D}_{m} be the set of Dyck paths of size m. Then, $\left|\mathcal{D}_{m}\right|=C_{m}$.

A bijection between triangulations and Dyck paths

For each $j=3,4, \ldots, n$:

- draw an N step,
- draw as many E steps as diagonals of the form (i, j) with $i<j$.

A bijection between triangulations and Dyck paths

For each $j=3,4, \ldots, n$:

- draw an N step,
- draw as many E steps as diagonals of the form (i, j) with $i<j$.

Draw an E step at the end.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of \mathfrak{C}_{n} as a maximal set of diagonals with no 2 -crossings.

Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of \mathfrak{C}_{n} as a maximal set of diagonals with no 2 -crossings.

Definition. A k-triangulation of \mathfrak{C}_{n} is a maximal set of diagonals with no $(k+1)$-crossings.

a 2 -triangulation

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

This 2-triangulation has
$2(8-2 \cdot 2-1)=6$ diagonals.

Theorem (Nakamigawa, Dress-Koolen-Moulton).
Every k-triangulation of \mathfrak{C}_{n} has exactly $k(n-2 k-1)$ diagonals.

Facts about generalized triangulations

All the diagonals connecting vertices at distance $\leq k$ belong to every k-triangulation. We ignore such diagonals.

This 2-triangulation has
$2(8-2 \cdot 2-1)=6$ diagonals.

Theorem (Nakamigawa, Dress-Koolen-Moulton).
Every k-triangulation of \mathfrak{C}_{n} has exactly $k(n-2 k-1)$ diagonals.

Theorem (Jonsson). The number of k-triangulations of \mathfrak{C}_{n} is

$$
\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}=\left|\begin{array}{ccccc}
C_{n-2} & C_{n-3} & \ldots & C_{n-k} & C_{n-k-1} \\
C_{n-3} & C_{n-4} & \ldots & C_{n-k-1} & C_{n-k-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
C_{n-k-1} & C_{n-k-2} & \ldots & C_{n-2 k+1} & C_{n-2 k}
\end{array}\right| .
$$

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Problem: Find a bijection between k-triangulations and k-tuples of non-crossing Dyck paths.

Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples
$\left(P_{1}, P_{2}, \ldots, P_{k}\right)$ of Dyck paths of size $n-2 k$ such that each P_{i} never goes below P_{i+1} is given by the same determinant $\operatorname{det}\left(C_{n-i-j}\right)_{i, j=1}^{k}$.

Problem: Find a bijection between k-triangulations and k-tuples of non-crossing Dyck paths.

- $k=1 \longrightarrow$ known
- $k=2 \longrightarrow$ we will see it next
- $k \geq 3 \longrightarrow$ open problem

We represent a 2 -triangulation as an array:

We represent a 2 -triangulation as an array:

A 3-crossing would be

where the blue rectangle containing the crosses is inside the array.

2-triangulations

We represent a 2 -triangulation as an array:

The purple crosses appear in any 2 -triangulation, and they can't be part of any 3 -crossing.

We represent a 2 -triangulation as an array:

The purple crosses appear in any 2 -triangulation, and they can't be part of any 3 -crossing.

We omit them for simplicity.
Now there are exactly $2 n-10$ diagonals.

The bijection: introduction

We will construct a bijection between 2 -triangulations and pairs of non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the crosses blue and the other half red.

At each iteration, one cross will be colored red and another blue, and two blocks will be merged.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part I): coloring stage

Repeat until all crosses have been colored:

- Let r be the largest index so that row r has a cross in block r.
- Color blue the leftmost uncolored cross in block r.
- Merge blocks $r-2$ and $r-1$. (If $r=2$, we consider that block 1 disappears when it is merged with "block 0 ".)
- Color red the rightmost uncolored cross in the merged block.

The bijection (part II): from colored crosses to paths

$\alpha_{i}:=\#$ blue crosses in column i
$\beta_{i}:=$ \# red crosses in column i

The bijection (part II): from colored crosses to paths

$\alpha_{i}:=\#$ blue crosses in column i
$\beta_{i}:=$ \# red crosses in column i
Define

$$
\begin{aligned}
P & =N E^{\alpha_{5}} N E^{\alpha_{6}} \cdots N E^{\alpha_{n-1}} N E^{\alpha_{n}} E \\
Q & =N E^{\beta_{4}} N E^{\beta_{5}} \cdots N E^{\beta_{n-2}} N E^{\beta_{n-1}} E
\end{aligned}
$$

Why does the bijection work?

Idea of the proof:

- Construct a generating tree for 2-triangulations.
- Construct a generating tree for pairs of non-crossing Dyck paths.
- Give an isomorphism between the generating trees.

Why does the bijection work?

Idea of the proof:

- Construct a generating tree for 2-triangulations.
- Construct a generating tree for pairs of non-crossing Dyck paths.
- Give an isomorphism between the generating trees.

Each node of a generating tree represents one of our objects.
Nodes at the same level represent objects of the same size.
A node at level ℓ has its children at level $\ell+1$.
There is a rule that describes the children of any given node.

A generating tree for 2-triangulations

The nodes at level ℓ represent the 2 -triangulations of an $(\ell+5)$-gon.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:
$r+3$

- Let r be the largest so that there is a diagonal $(r, r+3)$.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:
r+3

- Let r be the largest so that there is a diagonal $(r, r+3)$.
- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:

- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:

- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.
- Move columns $u+2$ and larger to the right.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:

- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.
- Move columns $u+2$ and larger to the right.
- Split column $u+1$ into two, by either
- duplicating a cross, and moving the ones below to the left column and the ones above to the right one; or
- adding a cross at the bottom of the right column, and moving all the crosses to the right column.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:

- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.
- Move columns $u+2$ and larger to the right.
- Split column $u+1$ into two, by either
- duplicating a cross, and moving the ones below to the left column and the ones above to the right one; or
- adding a cross at the bottom of the right column, and moving all the crosses to the right column.

The children of a 2-triangulation

To generate a child of a 2 -triangulation of an n-gon:

- Choose $u \in\{r, \ldots, n-2\}$. Add a cross in position $(u, u+2)$.
- Move columns $u+2$ and larger to the right.
- Split column $u+1$ into two, by either
- duplicating a cross, and moving the ones below to the left column and the ones above to the right one; or
- adding a cross at the bottom of the right column, and moving all the crosses to the right column.

Labeling the nodes

Given a 2 -triangulation T, let

- $r=\max \{a:(a, a+3) \in T\}$,
- $h_{j}=$ number of crosses in column j of the diagram of T.

We associate the label $\left(h_{r+1}, \ldots, h_{n-1}\right)$ to it.

Labeling the nodes

Given a 2 -triangulation T, let

- $r=\max \{a:(a, a+3) \in T\}$,
- $h_{j}=$ number of crosses in column j of the diagram of T.

We associate the label $\left(h_{r+1}, \ldots, h_{n-1}\right)$ to it.
Example:

has label $(2,3,3)$.

Labeling the nodes

Given a 2 -triangulation T, let

- $r=\max \{a:(a, a+3) \in T\}$,
- $h_{j}=$ number of crosses in column j of the diagram of T.

We associate the label $\left(h_{r+1}, \ldots, h_{n-1}\right)$ to it.
Example:

has label $(2,3,3)$.
This label determines the labels of its children, according to the generating rule

Labeling the nodes

Given a 2 -triangulation T, let

- $r=\max \{a:(a, a+3) \in T\}$,
- $h_{j}=$ number of crosses in column j of the diagram of T.

We associate the label $\left(h_{r+1}, \ldots, h_{n-1}\right)$ to it.
Example:

has label $(2,3,3)$.
This label determines the labels of its children, according to the generating rule

$$
\left.\begin{array}{rl}
\left(d_{1}, d_{2}, \ldots, d_{s}\right) \longrightarrow & \begin{array}{l}
\left\{\left(i, d_{j}-i+1, d_{j+1}+1, d_{j+2}, \ldots, d_{s}\right): 1 \leq j \leq s-1,0 \leq i \leq d_{j}\right\} \\
\cup\left\{\left(i, d_{s}-i+1\right): 0 \leq i \leq d_{s}+1\right\}
\end{array} \\
(0,1,3,2) \longrightarrow(0,1,2,3,2),(0,2,4,2),(1,1,4,2),(0,4,3),(1,3,3),(2,2,3),(3,1,3)
\end{array}\right)
$$

The generating tree with labels

$(0,0) \square$

Root: $\quad(0,0)$
Generating rule:
$\left(d_{1}, d_{2}, \ldots, d_{s}\right) \longrightarrow \begin{aligned} & \left\{\left(i, d_{j}-i+1, d_{j+1}+1, d_{j+2}, \ldots, d_{s}\right): 1 \leq j \leq s-1,0 \leq i \leq d_{j}\right\} \\ & \cup\left\{\left(i, d_{s}-i+1\right): 0 \leq i \leq d_{s}+1\right\} .\end{aligned}$

A generating tree for pairs of non-crossing Dyck paths

The nodes at level ℓ represent pairs of paths of size $\ell+1$.

Non-crossing Dyck paths

We will draw the upper path starting at $(0,1)$ and the lower path starting at $(1,0)$.

The old paths being non-crossing is equivalent to the new paths being non-intersecting.

Encoding of pairs of Dyck paths

If

$$
\begin{aligned}
& P=N E^{p_{m}} N E^{p_{m-1}} \cdots N E^{p_{2}} N E^{p_{1}} E \\
& Q=N E^{q_{m}} N E^{q_{m-1}} \cdots N E^{q_{2}} N E^{q_{1}} E
\end{aligned}
$$

we encode the pair as

$$
[P, Q]:=\left[\begin{array}{cccccccc}
p_{m+2} & p_{m+1} & p_{m} & p_{m-1} & \cdots & p_{3} & p_{2} & p_{1} \\
q_{m+1} & q_{m} & q_{m-1} & q_{m-2} & \cdots & q_{2} & q_{1} & 0
\end{array}\right]
$$

where $p_{m+1}=q_{m+1}=p_{m+2}=0$.

Example:

$$
[P, Q]=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 1 & \mathbf{1} & 2 & 2 \\
0 & 1 & 0 & 2 & 0 & 0 & 3 & 0 & \mathbf{0} & 1 & 2 & 0
\end{array}\right]
$$

Encoding of pairs of Dyck paths

If

$$
\begin{aligned}
& P=N E^{p_{m}} N E^{p_{m-1}} \cdots N E^{p_{2}} N E^{p_{1}} E \\
& Q=N E^{q_{m}} N E^{q_{m-1}} \cdots N E^{q_{2}} N E^{q_{1}} E
\end{aligned}
$$

we encode the pair as

$$
[P, Q]:=\left[\begin{array}{cccccccc}
p_{m+2} & p_{m+1} & p_{m} & p_{m-1} & \cdots & p_{3} & p_{2} & p_{1} \\
q_{m+1} & q_{m} & q_{m-1} & q_{m-2} & \cdots & q_{2} & q_{1} & 0
\end{array}\right]
$$

where $p_{m+1}=q_{m+1}=p_{m+2}=0$.
Let $s=s(P, Q)=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.

Example:

$$
\begin{gathered}
{[P, Q]=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 1 & \mathbf{1} & 2 & 2 \\
0 & 1 & 0 & 2 & 0 & 0 & 3 & 0 & \mathbf{0} & 1 & 2 & 0
\end{array}\right]} \\
s(P, Q)=3
\end{gathered}
$$

The children of a pair of Dyck paths

Let

$$
[P, Q]:=\left[\begin{array}{cccccccc}
p_{m+2} & p_{m+1} & p_{m} & p_{m-1} & \cdots & p_{3} & p_{2} & p_{1} \\
q_{m+1} & q_{m} & q_{m-1} & q_{m-2} & \cdots & q_{2} & q_{1} & 0
\end{array}\right]
$$

Let $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$ as before.
Choose $t \in\{1,2, \ldots, s\}$.

The children of a pair of Dyck paths

Let

$$
[P, Q]:=\left[\begin{array}{cccccccc}
p_{m+2} & p_{m+1} & p_{m} & p_{m-1} & \cdots & p_{3} & p_{2} & p_{1} \\
q_{m+1} & q_{m} & q_{m-1} & q_{m-2} & \cdots & q_{2} & q_{1} & 0
\end{array}\right]
$$

Let $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$ as before.
Choose $t \in\{1,2, \ldots, s\}$.
The following are encodings of children of (P, Q) :

$$
\begin{aligned}
& {\left[\begin{array}{ccccccccccc}
p_{m+2} & p_{m+1} & \cdots & p_{t+2} & p_{t+1}-i & i & p_{t}+1 & p_{t-1} & \cdots & p_{2} & p_{1} \\
q_{m+1} & q_{m} & \cdots & q_{t+1} & 0 & q_{t}+1 & q_{t-1} & q_{t-2} & \cdots & q_{1} & 0
\end{array}\right] \text { for each } i \in\left\{1, \ldots, p_{t+1}\right\},} \\
& {\left[\begin{array}{ccccccccccc}
p_{m+2} & p_{m+1} & \cdots & p_{t+2} & p_{t+1} & 0 & p_{t}+1 & p_{t-1} & \cdots & p_{2} & p_{1} \\
q_{m+1} & q_{m} & \cdots & q_{t+1} & 0 & q_{t}+1 & q_{t-1} & q_{t-2} & \cdots & q_{1} & 0
\end{array}\right] \text {, and }} \\
& {\left[\begin{array}{cccccccccc}
p_{m+2} & p_{m+1} & \cdots & p_{t+2} & p_{t+1} & 0 & p_{t}+1 & p_{t-1} & \cdots & p_{2} \\
q_{m+1} & q_{m} & \cdots & q_{t+1} & j & q_{t}-j+1 & q_{t-1} & q_{t-2} & \cdots & q_{1}
\end{array}\right] \quad 0.0 \text { for each } j \in\left\{1, \ldots, q_{t}+\delta_{1 t}\right\} .}
\end{aligned}
$$

The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m :

$$
\begin{gathered}
{[P, Q]=\left[\begin{array}{llllllllllll}
0 & 0 & \overbrace{0} \\
\overbrace{\mathbf{0}} & 0 & 3 & 1 & 3 \\
0 & 1 & 0 & 0 & 1 & 0 & \underbrace{\mathbf{2}}_{q_{s}} & 1 & 2 & 1 & 0
\end{array}\right]} \\
s=4
\end{gathered}
$$

- $\longrightarrow s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.
- Choose $t \in\{1,2, \ldots, s\}$.
- Add an east step to Q at level t in and to P at level $t-1$.
- Add a north step at level t to both P and Q as follows:
- add a north step in the leftmost position in Q, and anywhere in P; or
- add a north step in the rightmost position in P, and anywhere in Q.

The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m :

$$
\begin{gathered}
{[P, Q]=\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & \underbrace{\mathbf{2}}_{q_{s}} & \overbrace{\mathbf{0}}^{p_{s}} & 3 & 1 & 3 \\
1 & 2 & 1 & 0
\end{array}\right]} \\
s=4
\end{gathered}
$$

- $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.
- \longrightarrow Choose $t \in\{1,2, \ldots, s\}$.
- Add an east step to Q at level t in and to P at level $t-1$.
- Add a north step at level t to both P and Q as follows:
- add a north step in the leftmost position in Q, and anywhere in P; or
- add a north step in the rightmost position in P, and anywhere in Q.

The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m :

$$
\begin{gathered}
{[P, Q]=\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & \underbrace{\mathbf{2}}_{q_{s}} & \overbrace{\mathbf{0}}^{p_{s}} & 3 & 1 & 3 \\
1 & 2 & 1 & 0
\end{array}\right]} \\
s=4
\end{gathered}
$$

- $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.
- Choose $t \in\{1,2, \ldots, s\}$.
- \longrightarrow Add an east step to Q at level t in and to P at level $t-1$.
- Add a north step at level t to both P and Q as follows:
- add a north step in the leftmost position in Q, and anywhere in P; or
- add a north step in the rightmost position in P, and anywhere in Q.

The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m :

- $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.
- Choose $t \in\{1,2, \ldots, s\}$.
- Add an east step to Q at level t in and to P at level $t-1$.
$\bullet \longrightarrow$ Add a north step at level t to both P and Q as follows:
- add a north step in the leftmost position in Q, and anywhere in P; or
- add a north step in the rightmost position in P, and anywhere in Q.

The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m :

- $s=\min \left\{j \geq 2: p_{j} q_{j}=0\right\}$.
- Choose $t \in\{1,2, \ldots, s\}$.
- Add an east step to Q at level t in and to P at level $t-1$.
- Add a north step at level t to both P and Q as follows:
- add a north step in the leftmost position in Q, and anywhere in P; or
- add a north step in the rightmost position in P, and anywhere in Q.

The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths yield isomorphic generating trees.

The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths yield isomorphic generating trees.

The bijection we described is just the one induced by the isomorphism of generating trees.

Some properties of the bijection

- The number of crosses in each column of the 2-triangulation equals the number of east steps at each level of the pair of Dyck paths (not counting the last east step of P and Q).

Some properties of the bijection

- The number of crosses in each column of the 2-triangulation equals the number of east steps at each level of the pair of Dyck paths (not counting the last east step of P and Q).
- Splitting a column in the 2-triangulation is equivalent to splitting a level of the pair of paths into two.

Generalization to arbitrary k ?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples of non-crossing Dyck paths, for $k \geq 3$?

Generalization to arbitrary k ?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples of non-crossing Dyck paths, for $k \geq 3$?

Partial progress:

The same idea of splitting columns can be used to construct a generating tree for k triangulations.

- However, it is not clear what is the corresponding operation to generate children of a k-tuple of Dyck paths that would give an isomorphic generating tree.

