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Triangulations

Let ¢,, be a regular n-gon.
A triangulation of ¢, is a subdivision of €,, into triangles, using
diagonals that do not cross.

38 1

5 4

® Every triangulation of ¢,, has exactly n — 3 diagonals.
$® The number of triangulations of &, is

1 2n — 4
Ch_2 = )
’ n—l(n—Q)

where C,,, 1s the m-th Catalan number.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x
with steps N = (0,1) and E = (1,0) that never goes below this
diagonal.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x
with steps N = (0,1) and E = (1,0) that never goes below this
diagonal.

If (m,m) is the final point, we call m the size of the path.
Let D,,, be the set of Dyck paths of size m. Then, |D,,| = C,,.
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A bijection between triangulations and Dyck paths

5 4
Foreach j =3,4,....n:
® draw an N step,

® draw as many FE steps as diagonals of the form (4, j) with ¢ < j.
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A bijection between triangulations and Dyck paths

5 4
Foreach j =3,4,....n:
® draw an N step,

® draw as many FE steps as diagonals of the form (4, j) with ¢ < j.
Draw an E step at the end.
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Generalized triangulations

Definition. A j-crossing is a set of J diagonals where any two of them cross.
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Generalized triangulations

Definition. A j-crossing is a set of J diagonals where any two of them cross.

We could have defined a triangulation of ¢,, as a maximal set of
diagonals with no 2-crossings.
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Definition.

Generalized triangulations

A j-crossing is a set of 7 diagonals where any two of them cross.

We could have defined a triangulation of ¢,, as a maximal set of

diagonals with no 2-crossings.

Definition. A k-triangulation of ¢,, is a maximal set of diagonals with no

(k + 1)-crossings.
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% a 2-triangulation
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation. We ignore such diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every
k-triangulation. We ignore such diagonals.
8 1

This 2-triangulation has

2(8—-2-2—1) = 6 diagonals.
3

5 4

Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of €,, has exactly k(n — 2k — 1) diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance < k belong to every

k-triangulation. We ignore such diagonals.
8 1

This 2-triangulation has

2(8—-2-2—1) = 6 diagonals.
3

5 4

Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of €,, has exactly k(n — 2k — 1) diagonals.

Theorem (Jonsson). The number of k-triangulations of &,, is

Cn—2 Ch—3 R Cn—k Cn—k—l

iy Cn—3 Cn—a ... Cpu_p1 Ch_p_2
det(Crn—i—j)i j=1 =

Cn-k-1 Ch_k—2 ... Chopy1 Ch_2g
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Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

below P; 1 is given by the same determinant det(C),—;—_;)

k
,J=1
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Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

k

below P; 1 is given by the same determinant det(Cn_i_j)i’jzl.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.
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Non-crossing Dyck paths

Theorem (Lindstrém, Gessel-Viennot). The number of k-tuples

(P1, Ps, ..., Py) of Dyck paths of size n — 2k such that each P; never goes

k

below P; 1 is given by the same determinant det(Cn_i_j)i’jzl.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.

®» k=1 — known
® k=2 — we will see it next
® L >3 — open problem
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2-triangulations

We represent a 2-triangulation as an array:

8 1 2345678
TN, 1
L7 L \2 2
7\\ // / 3
,\/ /\’ 4
/ , \\ 5
6 \\\w. /’/// ] 6
\ :/\’\/\ // I

5 4
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2-triangulations

We represent a 2-triangulation as an array:

8 1 23456738
7 \>// \ 1
/ - ~
707" Y% 2
‘\ / f 3
,\/ /\’ 4
/ // \\3 5
6 \\\V. //// 6
\ ,/\’\/\ // 4
5 4
A 3-crossing would be
3 1 2345678
1
2 2
! 3
4
5
6 3 6
-

5 4
where the blue rectangle containing the crosses is inside the array.
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2-triangulations

We represent a 2-triangulation as an array:

8 1 2345678
TN, 1
L7 L \2 2
7\\ // / 3
,\/ /\’ 4
/ , \\ 5
6 \\\w. /’/// ] 6
\ :/\’\/\ // I

5 4

The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.
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2-triangulations

We represent a 2-triangulation as an array:
8 1

456 78

O wWNPEF

5 4

The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.
We omit them for simplicity.

Now there are exactly 2n — 10 diagonals.
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The bijection: introduction

We will construct a bijection between 2-triangulations and pairs of
non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the
crosses blue and the other half red.

coumns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8 9011

© 00 ~NO O & WN P

=
o

11

At each iteration, one cross will be colored red and another blue, and
two blocks will be merged.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8 90 11

© 00 N O Ol & WDN P

[EY
o

=
|
=
|
—
-

Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8 90 11
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8 910

© 00 N O Ol & WDN P
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8 910
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Repeat until all crosses have been colored:

>

9
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 45 6 7 8 9

© 00 N O Ol & WDN P
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.

MIT Combinatorics Seminar, 9/20/2006 — p.10



The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7 8
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Repeat until all crosses have been colored:
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9
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Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6 7
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5 6
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2 3 4 5
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.

Merge blocks » — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
1 2 3 4
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Repeat until all crosses have been colored:

>

9
9

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block 7.
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Color red the rightmost uncolored cross in the merged block.
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Let r be the largest index so that row r has a cross in block r.
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Merge blocks » — 2 and r — 1.
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The bijection (part I): coloring stage

columns: 4 5 6 7 8 9 10 11 12 13 1«
blocks: 1 2

© 00 N O Ol & WDN P

[HE
o

|
| —

Repeat until all crosses have been colored:
® Letr be the largest index so that row r has a cross in block r.

® Color blue the leftmost uncolored cross in block r.

® Merge blocks »r — 2 and r — 1.
(If » = 2, we consider that block 1 disappears when it is merged with “block 0".)

® Color red the rightmost uncolored cross in the merged block.
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The bijection (part Il): from colored crosses to paths

4 5 6 7 8 9101112 13 14

:= #* blue crosses in column 7

. := 7 red crosses in column ¢
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The bijection (part Il): from colored crosses to paths

45 6 7 8 910 1112 13 14
L JJ_LL
2
3 P
4
5 .
i [ o
8 4,
10 |
11
a; := # blue crosses in column 7
f; := # red crosses in column ¢
Define
P = NESNE*...NE-1NE[E

NEPsNEPs ... NEPr—2NEP—1 B
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Why does the bijection work?

ldea of the proof:

® Construct a generating tree for 2-triangulations.
® Construct a generating tree for pairs of non-crossing Dyck paths.
® Give an isomorphism between the generating trees.
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Why does the bijection work?

ldea of the proof:

® Construct a generating tree for 2-triangulations.
® Construct a generating tree for pairs of non-crossing Dyck paths.
® Give an isomorphism between the generating trees.

Each node of a generating tree represents one of our objects.
Nodes at the same level represent objects of the same size.

A node at level ¢ has its children at level ¢ + 1.

There is a rule that describes the children of any given node.
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A generating tree for 2-triangulations

LN

AN

AN

AN AN AN

The nodes at level ¢/ represent the 2-triangulations of an (¢ 4 5)-gon.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:
r+3

n-3

® |etr be the largest so that there is a diagonal (r,r + 3).
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

r+3
1
2
r u
n-3 u

u

® |etr be the largest so that there is a diagonal (r,r + 3).
® Choose u € {r,...,n —2}. Add a cross in position (u, u + 2).
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:
u+2

u

® Choose u € {r,...,n —2}. Add a cross in position (u, u + 2).
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

® Choose u € {r,...,n —2}. Add a cross in position (u, u + 2).
® Move columns u + 2 and larger to the right.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

:

® Choose u € {r,...,n —2}. Add a cross in position (u, u + 2).
® Move columns u + 2 and larger to the right.
$ Split column u + 1 into two, by either

® duplicating a cross, and moving the ones below to the left column and the
ones above to the right one; or

® adding a cross at the bottom of the right column, and moving all the crosses
to the right column.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

® Choose u € {r,...,n —2}. Add a cross in position (u, u + 2).
® Move columns u + 2 and larger to the right.
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Labeling the nodes

Given a 2-triangulation 7', let
® r=max{a : (a,a+3) €T},
® h; = number of crosses in column j of the diagram of 7.

We associate the label (h,41,...,h,—1) tOit.

MIT Combinatorics Seminar, 9/20/2006 — p.15



Labeling the nodes

Given a 2-triangulation 7', let
® r=max{a : (a,a+3) €T},
® h; = number of crosses in column j of the diagram of 7.

We associate the label (h,41,...,h,—1) tOit.

4 5 6 7 8 91011

Example:

0o ~NOoO ol h WDN B

has label (2, 3, 3).
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Labeling the nodes

Given a 2-triangulation 7', let
® r=max{a : (a,a+3) €T},
® h; = number of crosses in column j of the diagram of 7.

We associate the label (h,41,...,h,—1) tOit.

4 5 6 7 8 91011

Example:

0o ~NOoO ol h WDN B

has label (2, 3, 3).

This label determines the labels of its children, according to the
generating rule

(d d d) N {(¢,dj —i+1,dj41+1,djq2,...,ds) : 1 <j<s—1,0<1¢<d;}
1,82,...yUs) —

U{(i,ds —i4+1) : 0<i<ds+1}.
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Labeling the nodes

Given a 2-triangulation 7', let
® r=max{a : (a,a+3) €T},
® h; = number of crosses in column j of the diagram of 7.

We associate the label (h,41,...,h,—1) tOit.

4 5 6 7 8 91011

Example:

0o ~NOoO ol h WDN B

has label (2, 3, 3).

This label determines the labels of its children, according to the
generating rule

(d d d) N {(¢,dj —i+1,dj41+1,djq2,...,ds) : 1 <j<s—1,0<1¢<d;}
1,82,...yUs) —

U{(i,ds —i4+1) : 0<i<ds+1}.

(0,1,3,2) — (0,1,2,3,2), (0,2,4,2), (1,1,4,2), (0,4, 3), (1, 3,3), (2,2,3), (3,1, 3),
(0,3), (1,2), (2,1), (3,0).
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The generating tree with labels

0,0 L_
]
0L 0,1) (1,0)

(0,1,2,1) 0221 @12 0,2 (1,1 @, .1, o, a, @ 01y @ @4) (1,0)

) NP P77\ D7/ N7/ N7/ N7\ NP7\ NUDZ/\ NP7/ NP7/ N7\ N/ NI/ AN

Root: (0,0)

Generating rule:

di,ds,...,ds) —
(17 2 ) ) — {( d i );0§i§d3+1}-
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A generating tree for pairs of non-crossing Dyck paths

]
T
- ~ =

TS TS VS

D Rl e iy
/17 N NS N NG N Y N N7/ N N 1Y

The nodes at level ¢ represent pairs of paths of size ¢ + 1.
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Non-crossing Dyck paths

We will draw the upper path starting at (0, 1) and the lower path
starting at (1, 0).

¥

The old paths being non-crossing is equivalent to the new paths being
non-intersecting.
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Encoding of pairs of Dyck paths

| P— NEP»NEPm-1... NEP2NEPLE
Q=NEI™NEI™1.. NEENFE"'FE,

we encode the pair as

| Pm+2 Pm+1 Pm Pm—-1 -+ D3 P2 DPi
[P7 Q] T 9
dm—+1 dm dm—1 qm—2 tte g2 qi O

where Pm+1 = m+1 = Pm+2 = 0.

Example:

[P7Q] —

0102003001220

000102001122]
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Encoding of pairs of Dyck paths

| P— NEP»NEPm-1... NEP2NEPLE
Q=NEI™NEI™1.. NEENFE"'FE,

we encode the pair as

Pm+2 Pm+1 Pm Pm—1 -+ P3 P2 D1

1P, Q] = :
dm+1 dm dm—1 dm—2 g2 q1 0

where Pm+1 = m+1 = Pm+2 = 0.
Let s = s(P,Q) = min{j > 2:p,q; = 0}.

Example:

p
000102001122

- [P7Q]:
0102003007120

s(P,Q) =3

MIT Combinatorics Seminar, 9/20/2006 — p.19



The children of a pair of Dyck paths

Let
Pm+2 DPm+1 Pm Pm—-1 -+ P3 P2 D1

[P, Q] :=

Qm—+1 qm qm—-1 qm-2 -+ q q 0

Let s = min{j > 2 : p;q; = 0} as before.

Choose t € {1,2,...,s}.
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The children of a pair of Dyck paths

Let
P.Ql = Pm+2 DPm+1  Pm  DPm—1 pP3 P2 P1
dm-41 qm Qm—-1 Ggm—2 g2 q1 O
Let s = min{j > 2 :p,q; = 0} as before.
Choose t € {1,2,...,s}.
The following are encodings of children of (P, Q):
— i +1 pi_q .-
Pm+2 Pm+1 Pt+2 Dt+1 Dt Pt—1 P2 P1 for each i € {1,---,pt+1},
Qm+1  qQm " Qi1 0 g +1 q—-1 q—2 --- g1 O
Pm+2 Pm+1 "+ Pt+2 P41 0 pe+1 pr—1 - p2 p1 and
Qm+1 qm - q+1 O q+1 q—1 qi—2 - g1 O
0 4+ 1 ppq -
Pm+2 Pm+1 Pt+2 ptj'tl | Dt Pt—1 P2 P1 for eachj c {1,”.,% +51t}-
Qm+1 qm - q@+1 J q—J+1 qg—-1 q—2 --- g1 O
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The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m:

level
1
2

3 PN
s=4 O 0O0O0OO0OO0O 1 0 1 3
[P7Q]:
01 0010 2 1 1 0
~—
| ds .
’7 S=4

— s =min{j > 2:p,q; = 0}.
Choose t € {1,2,...,s}.
Add an east step to () at level ¢t in and to P at level ¢t — 1.

Add a north step at level ¢ to both P and () as follows:
® add a north step in the leftmost position in (), and anywhere in P; or

oo 0o o

® add a north step in the rightmost position in P, and anywhere in Q).
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The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths
yield isomorphic generating trees.

/\

I_

TS U N

AN
)

T

- ™ -

S T NS

R e el

NN N NN NN N NN N A
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The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths
yield isomorphic generating trees.

/\

I_

TS U N

NN N
r
e
ol [ H

S T NS

STCFEd ST PP EE Y

NN N NN NN N NN N A

The bijection we described is just the one induced by the isomorphism
of generating trees.
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Some properties of the bijection

P O WO NWOEFLDNDAMENDN

1 0302301242

® The number of crosses in each column of the 2-triangulation
equals the number of east steps at each level of the pair of Dyck
paths (not counting the last east step of P and Q).
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Some properties of the bijection

IS

@)
P O W ONWO PR

1 03 02 301 4 2

® The number of crosses in each column of the 2-triangulation
equals the number of east steps at each level of the pair of Dyck
paths (not counting the last east step of P and Q).

$ Splitting a column in the 2-triangulation is equivalent to splitting a
level of the pair of paths into two.
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Generalization to arbitrary £?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k > 3?
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Generalization to arbitrary £?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k > 3?

Partial progress:

The same idea of splitting

° columns can be used to con-
struct a generating tree for k-

triangulations.

® However, it is not clear what is the corresponding operation to
generate children of a k-tuple of Dyck paths that would give an
Isomorphic generating tree.
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