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Triangulations

Let Cn be a regular n-gon.
A triangulation of Cn is a subdivision of Cn into triangles, using
diagonals that do not cross.
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Every triangulation of Cn has exactly n − 3 diagonals.

The number of triangulations of Cn is

Cn−2 =
1

n − 1

(
2n − 4

n − 2

)

,

where Cm is the m-th Catalan number.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x

with steps N = (0, 1) and E = (1, 0) that never goes below this
diagonal.
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Dyck paths

A Dyck path is a lattice path from (0, 0) to a point on the diagonal y = x

with steps N = (0, 1) and E = (1, 0) that never goes below this
diagonal.

If (m, m) is the final point, we call m the size of the path.

Let Dm be the set of Dyck paths of size m. Then, |Dm| = Cm.
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A bijection between triangulations and Dyck paths
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For each j = 3, 4, . . . , n:

draw an N step,

draw as many E steps as diagonals of the form (i, j) with i < j.
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A bijection between triangulations and Dyck paths
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For each j = 3, 4, . . . , n:

draw an N step,

draw as many E steps as diagonals of the form (i, j) with i < j.

Draw an E step at the end.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of Cn as a maximal set of
diagonals with no 2-crossings.
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Generalized triangulations

Definition. A j-crossing is a set of j diagonals where any two of them cross.

We could have defined a triangulation of Cn as a maximal set of
diagonals with no 2-crossings.

Definition. A k-triangulation of Cn is a maximal set of diagonals with no

(k + 1)-crossings.
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a 2-triangulation
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation.

8 1

2

3

45

6

7

MIT Combinatorics Seminar, 9/20/2006 – p.6



Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.

8 1

2

3

45

6

7

8 1

2

3

45

6

7

MIT Combinatorics Seminar, 9/20/2006 – p.6



Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.
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Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of Cn has exactly k(n − 2k − 1) diagonals.

This 2-triangulation has

2(8 − 2 · 2 − 1) = 6 diagonals.
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Facts about generalized triangulations

All the diagonals connecting vertices at distance ≤ k belong to every
k-triangulation. We ignore such diagonals.
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Theorem (Nakamigawa, Dress-Koolen-Moulton).

Every k-triangulation of Cn has exactly k(n − 2k − 1) diagonals.

This 2-triangulation has

2(8 − 2 · 2 − 1) = 6 diagonals.

Theorem (Jonsson). The number of k-triangulations of Cn is

det(Cn−i−j)
k
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.
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Non-crossing Dyck paths

Theorem (Lindström, Gessel-Viennot). The number of k-tuples

(P1, P2, . . . , Pk) of Dyck paths of size n − 2k such that each Pi never goes

below Pi+1 is given by the same determinant det(Cn−i−j)
k
i,j=1.

Problem: Find a bijection between k-triangulations and k-tuples of
non-crossing Dyck paths.

k = 1 −→ known

k = 2 −→ we will see it next

k ≥ 3 −→ open problem
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2-triangulations

We represent a 2-triangulation as an array:
5 6 7 843
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2-triangulations

We represent a 2-triangulation as an array:
5 6 7 843

6
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A 3-crossing would be
5 6 7 81
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7
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where the blue rectangle containing the crosses is inside the array.
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2-triangulations

We represent a 2-triangulation as an array:
5 6 7 843

6

1
2
3
4
5

2

7

1

2

3
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The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.
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2-triangulations

We represent a 2-triangulation as an array:

8
1
2
3
4
5

1

2

3

45

6

7

8
4 5 6 7

The purple crosses appear in any 2-triangulation, and they can’t be
part of any 3-crossing.

We omit them for simplicity.

Now there are exactly 2n − 10 diagonals.
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The bijection: introduction

We will construct a bijection between 2-triangulations and pairs of
non-crossing Dyck paths.

Given a 2-triangulation, first we give an algorithm to color half of the
crosses blue and the other half red.
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columns:

blocks: 1 2 3 4 5 6 7 8 910

At each iteration, one cross will be colored red and another blue, and
two blocks will be merged.
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The bijection (part I): coloring stage
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columns:

blocks: 1 2 3 4 5 6 7 8 910

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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4 5 6 7 8 9 10 11 12 13 14

1

2

3

4

5

6

7

8

9

10
11

columns:

blocks: 1 2 3 4 5 6 7 8 910

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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4 5 6 7 8 9 10 11 12 13 14
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columns:

blocks: 1 2 3 4 5 6 7 9 10

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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4 5 6 7 8 9 10 11 12 13 14

1
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columns:

blocks: 1 2 3 4 5 6 7

r = 10

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

columns:

5 6 7 98

4 5 6 7 8 9 10 11 12 13 14

1
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blocks: 1 2 3 4

r = 9

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

7

2 3 4 5 6 8

columns:

7
4 5 6 7 8 9 10 11 12 13 14
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blocks: 1

r = 7

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 1 2 3 4
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7
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4 5 6 7 8 9 10 11 12 13 14
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r = 6

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 1 2 3

columns:

7
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4 5 6 7 8 9 10 11 12 13 14
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r = 4

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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blocks: 1

columns:

7

2 3 4

4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage

blocks:
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blocks:

columns:

7

1 2 3 4

2

4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

7

2

blocks: 32
4 5 6 7 8 9 10 11 12 13 14

r = 2

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part I): coloring stage
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columns:

7

2

blocks: 1

4 5 6 7 8 9 10 11 12 13 14

Repeat until all crosses have been colored:

Let r be the largest index so that row r has a cross in block r.

Color blue the leftmost uncolored cross in block r.

Merge blocks r − 2 and r − 1.
(If r = 2, we consider that block 1 disappears when it is merged with “block 0".)

Color red the rightmost uncolored cross in the merged block.
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The bijection (part II): from colored crosses to paths
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αi := # blue crosses in column i

βi := # red crosses in column i
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The bijection (part II): from colored crosses to paths
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P

Q

αi := # blue crosses in column i

βi := # red crosses in column i

Define

P = NEα5NEα6 · · ·NEαn−1NEαnE

Q = NEβ4NEβ5 · · ·NEβn−2NEβn−1E
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Why does the bijection work?

Idea of the proof:

Construct a generating tree for 2-triangulations.

Construct a generating tree for pairs of non-crossing Dyck paths.

Give an isomorphism between the generating trees.
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Why does the bijection work?

Idea of the proof:

Construct a generating tree for 2-triangulations.

Construct a generating tree for pairs of non-crossing Dyck paths.

Give an isomorphism between the generating trees.

Each node of a generating tree represents one of our objects.

Nodes at the same level represent objects of the same size.

A node at level ℓ has its children at level ℓ + 1.

There is a rule that describes the children of any given node.
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A generating tree for 2-triangulations

The nodes at level ℓ represent the 2-triangulations of an (ℓ + 5)-gon.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:
r+3

n−3

r

1

2

Let r be the largest so that there is a diagonal (r, r + 3).

MIT Combinatorics Seminar, 9/20/2006 – p.14



The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:
r+3

n−3

r

1

2

u
u
u

Let r be the largest so that there is a diagonal (r, r + 3).

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

u

u+2

r

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

u

r+3

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
Move columns u + 2 and larger to the right.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

u

r+3

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
Move columns u + 2 and larger to the right.
Split column u + 1 into two, by either

duplicating a cross, and moving the ones below to the left column and the
ones above to the right one; or

adding a cross at the bottom of the right column, and moving all the crosses
to the right column.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
Move columns u + 2 and larger to the right.
Split column u + 1 into two, by either

duplicating a cross, and moving the ones below to the left column and the
ones above to the right one; or

adding a cross at the bottom of the right column, and moving all the crosses
to the right column.
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The children of a 2-triangulation

To generate a child of a 2-triangulation of an n-gon:

Choose u ∈ {r, . . . , n − 2}. Add a cross in position (u, u + 2).
Move columns u + 2 and larger to the right.
Split column u + 1 into two, by either

duplicating a cross, and moving the ones below to the left column and the
ones above to the right one; or

adding a cross at the bottom of the right column, and moving all the crosses
to the right column.
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Labeling the nodes

Given a 2-triangulation T , let

r = max{a : (a, a + 3) ∈ T},

hj = number of crosses in column j of the diagram of T .

We associate the label (hr+1, . . . , hn−1) to it.
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Labeling the nodes

Given a 2-triangulation T , let

r = max{a : (a, a + 3) ∈ T},

hj = number of crosses in column j of the diagram of T .

We associate the label (hr+1, . . . , hn−1) to it.

Example:
1

2

3

4

5

6

7

8

4 5 6 7 8 9 1011

has label (2, 3, 3).
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Labeling the nodes

Given a 2-triangulation T , let

r = max{a : (a, a + 3) ∈ T},

hj = number of crosses in column j of the diagram of T .

We associate the label (hr+1, . . . , hn−1) to it.

Example:
1

2

3

4

5

6

7

8

4 5 6 7 8 9 1011

has label (2, 3, 3).

This label determines the labels of its children, according to the
generating rule

(d1, d2, . . . , ds) −→
{(i, dj − i + 1, dj+1 + 1, dj+2, . . . , ds) : 1 ≤ j ≤ s − 1, 0 ≤ i ≤ dj}

∪ {(i, ds − i + 1) : 0 ≤ i ≤ ds + 1}.
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Labeling the nodes

Given a 2-triangulation T , let

r = max{a : (a, a + 3) ∈ T},

hj = number of crosses in column j of the diagram of T .

We associate the label (hr+1, . . . , hn−1) to it.

Example:
1

2

3

4

5

6

7

8

4 5 6 7 8 9 1011

has label (2, 3, 3).

This label determines the labels of its children, according to the
generating rule

(d1, d2, . . . , ds) −→
{(i, dj − i + 1, dj+1 + 1, dj+2, . . . , ds) : 1 ≤ j ≤ s − 1, 0 ≤ i ≤ dj}

∪ {(i, ds − i + 1) : 0 ≤ i ≤ ds + 1}.

(0, 1, 3, 2) −→ (0, 1, 2, 3, 2), (0, 2, 4, 2), (1, 1, 4, 2), (0, 4, 3), (1, 3, 3), (2, 2, 3), (3, 1, 3),
(0, 3), (1, 2), (2, 1), (3, 0).
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The generating tree with labels

(1,0)

(0,1,1) (0,1) (1,0)

(0,0)

(0,2,2)(0,1,2,1) (1,1,2) (0,2) (1,1) (2,0) (0,1,2) (0,2) (1,1) (2,0) (0,2,1) (1,1,1) (0,1)

Root: (0, 0)

Generating rule:

(d1, d2, . . . , ds) −→
{(i, dj − i + 1, dj+1 + 1, dj+2, . . . , ds) : 1 ≤ j ≤ s − 1, 0 ≤ i ≤ dj}

∪ {(i, ds − i + 1) : 0 ≤ i ≤ ds + 1}.
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A generating tree for pairs of non-crossing Dyck paths

The nodes at level ℓ represent pairs of paths of size ℓ + 1.
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Non-crossing Dyck paths

We will draw the upper path starting at (0, 1) and the lower path
starting at (1, 0).

P

Q

P

Q

The old paths being non-crossing is equivalent to the new paths being
non-intersecting.
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Encoding of pairs of Dyck paths

If P = NEpmNEpm−1 · · ·NEp2NEp1E

Q = NEqmNEqm−1 · · ·NEq2NEq1E,

we encode the pair as

[P, Q] :=

[
pm+2 pm+1 pm pm−1 · · · p3 p2 p1

qm+1 qm qm−1 qm−2 · · · q2 q1 0

]

,

where pm+1 = qm+1 = pm+2 = 0.

P

Q

Example:

[P, Q] =




0 0 0 1 0 2 0 0 1 1 2 2

0 1 0 2 0 0 3 0 0 1 2 0




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Encoding of pairs of Dyck paths

If P = NEpmNEpm−1 · · ·NEp2NEp1E

Q = NEqmNEqm−1 · · ·NEq2NEq1E,

we encode the pair as

[P, Q] :=

[
pm+2 pm+1 pm pm−1 · · · p3 p2 p1

qm+1 qm qm−1 qm−2 · · · q2 q1 0

]

,

where pm+1 = qm+1 = pm+2 = 0.

Let s = s(P, Q) = min{j ≥ 2 : pjqj = 0}.

P

Q

Example:

[P, Q] =




0 0 0 1 0 2 0 0 1 1 2 2

0 1 0 2 0 0 3 0 0 1 2 0





s(P, Q) = 3
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The children of a pair of Dyck paths

Let

[P, Q] :=




pm+2 pm+1 pm pm−1 · · · p3 p2 p1

qm+1 qm qm−1 qm−2 · · · q2 q1 0



 .

Let s = min{j ≥ 2 : pjqj = 0} as before.

Choose t ∈ {1, 2, . . . , s}.
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The children of a pair of Dyck paths

Let

[P, Q] :=




pm+2 pm+1 pm pm−1 · · · p3 p2 p1

qm+1 qm qm−1 qm−2 · · · q2 q1 0



 .

Let s = min{j ≥ 2 : pjqj = 0} as before.

Choose t ∈ {1, 2, . . . , s}.

The following are encodings of children of (P, Q):



pm+2 pm+1 · · · pt+2 pt+1 − i i pt + 1 pt−1 · · · p2 p1

qm+1 qm · · · qt+1 0 qt + 1 qt−1 qt−2 · · · q1 0



 for each i ∈ {1, . . . , pt+1},




pm+2 pm+1 · · · pt+2 pt+1 0 pt + 1 pt−1 · · · p2 p1

qm+1 qm · · · qt+1 0 qt + 1 qt−1 qt−2 · · · q1 0



, and




pm+2 pm+1 · · · pt+2 pt+1 0 pt + 1 pt−1 · · · p2 p1

qm+1 qm · · · qt+1 j qt − j + 1 qt−1 qt−2 · · · q1 0



 for each j ∈ {1, . . . , qt + δ1t}.
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The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m:

s= 4

2

3

1

level

[P, Q] =








0 0 0 0 0 0 1

ps

︷︸︸︷

0 3 1 3

0 1 0 0 1 0 2
︸︷︷︸

qs

1 2 1 0








s = 4

−→ s = min{j ≥ 2 : pjqj = 0}.

Choose t ∈ {1, 2, . . . , s}.

Add an east step to Q at level t in and to P at level t − 1.

Add a north step at level t to both P and Q as follows:
add a north step in the leftmost position in Q, and anywhere in P ; or

add a north step in the rightmost position in P , and anywhere in Q.
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The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m:

t= 2

level

1

s= 4

3

NE

E

NNNN N N

[P, Q] =








0 0 0 0 0 0 1

ps

︷︸︸︷

0 3 1 3

0 1 0 0 1 0 2
︸︷︷︸

qs

1 2 1 0








s = 4

s = min{j ≥ 2 : pjqj = 0}.

−→ Choose t ∈ {1, 2, . . . , s}.

Add an east step to Q at level t in and to P at level t − 1.

Add a north step at level t to both P and Q as follows:
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The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m:

level

3

t= 2

1

N NNN N N N

[P, Q] =







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ps

︷︸︸︷

0 3 1 3

0 1 0 0 1 0 2
︸︷︷︸
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1 2 1 0








s = 4

s = min{j ≥ 2 : pjqj = 0}.

Choose t ∈ {1, 2, . . . , s}.

−→ Add an east step to Q at level t in and to P at level t − 1.
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add a north step in the rightmost position in P , and anywhere in Q.
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The children of a pair of Dyck paths: example

To generate a child of a pair of non-crossing Dyck paths of size m:

s = min{j ≥ 2 : pjqj = 0}.

Choose t ∈ {1, 2, . . . , s}.

Add an east step to Q at level t in and to P at level t − 1.

Add a north step at level t to both P and Q as follows:
add a north step in the leftmost position in Q, and anywhere in P ; or

add a north step in the rightmost position in P , and anywhere in Q.
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The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths
yield isomorphic generating trees.
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The two generating trees are isomorphic

These generating rules for 2-triangulations and for pairs of Dyck paths
yield isomorphic generating trees.

The bijection we described is just the one induced by the isomorphism
of generating trees.
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Some properties of the bijection

1 2421032030

←→

P

Q

4

2

1

0

3

0

2

3

0

1

2

The number of crosses in each column of the 2-triangulation
equals the number of east steps at each level of the pair of Dyck
paths (not counting the last east step of P and Q).
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Some properties of the bijection

1 030 2421032

←→

P

Q

1

2
4

2

1

0

3

0

2

3

0

The number of crosses in each column of the 2-triangulation
equals the number of east steps at each level of the pair of Dyck
paths (not counting the last east step of P and Q).

Splitting a column in the 2-triangulation is equivalent to splitting a
level of the pair of paths into two.
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Generalization to arbitrary k?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k ≥ 3?
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Generalization to arbitrary k?

Open problem:

Is there an analogous bijection between k-triangulations and k-tuples
of non-crossing Dyck paths, for k ≥ 3?

Partial progress:

The same idea of splitting
columns can be used to con-
struct a generating tree for k-
triangulations.

However, it is not clear what is the corresponding operation to
generate children of a k-tuple of Dyck paths that would give an
isomorphic generating tree.
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