Schur-positive grid classes and cyclic descents of SYT

Sergi Elizalde
Dartmouth College

Joint work with Ron Adin and Yuval Roichman

Oberwolfach, May 2018

Permutations and quasisymmetric functions

Let $\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ be a permutation.
The descent set of a π is

$$
\operatorname{Des}(\pi)=\left\{i \in[n-1]: \pi_{i}>\pi_{i+1}\right\} .
$$

Example: $\operatorname{Des}(51432)=\{1,3,4\}$.

Permutations and quasisymmetric functions

Let $\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ be a permutation.
The descent set of a π is

$$
\operatorname{Des}(\pi)=\left\{i \in[n-1]: \pi_{i}>\pi_{i+1}\right\} .
$$

Example: $\operatorname{Des}(51432)=\{1,3,4\}$.
Define the fundamental quasisymmetric function

$$
F_{\pi}=\sum_{\substack{i_{1} \leq i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j}+1}} x_{i_{1} \text { if } j \in \operatorname{Des}(\pi)} x_{i_{2}} \cdots x_{i_{n}} .
$$

Permutations and quasisymmetric functions

Let $\pi=\pi_{1} \ldots \pi_{n} \in \mathcal{S}_{n}$ be a permutation.
The descent set of a π is

$$
\operatorname{Des}(\pi)=\left\{i \in[n-1]: \pi_{i}>\pi_{i+1}\right\} .
$$

Example: $\operatorname{Des}(51432)=\{1,3,4\}$.
Define the fundamental quasisymmetric function

$$
F_{\pi}=\sum_{\substack{i_{1} \leq i_{2} \leq \ldots \leq i_{n} \\ i_{j}<i_{j}+1}} x_{i_{1} j \in x_{i} \in x_{2}} \cdots x_{i_{n}} .
$$

Example: For $\pi=132, \operatorname{Des}(\pi)=\{2\}$ and
$F_{132}=\sum_{i_{1} \leq i_{2}<i_{3}} x_{i_{1}} x_{i_{2}} x_{i_{3}}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\cdots+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+\ldots$
Quasisymmetric: coeff of $x_{i_{1}}^{\alpha_{1}} \ldots x_{i_{k}}^{\alpha_{k}}$ is the same for any $i_{1}<\cdots<i_{k}$.

Permutations and quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Permutations and quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question (Gessel-Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?

Permutations and quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question (Gessel-Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question (Adin-Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?
A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are ≥ 0.

Permutations and quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question (Gessel-Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question (Adin-Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?
A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are ≥ 0.
" A is Schur-positive" will mean " $\mathcal{Q}(A)$ is Schur-positive".

Permutations and quasi-symmetric functions

For $A \subseteq \mathcal{S}_{n}$, let

$$
\mathcal{Q}(A)=\sum_{\pi \in A} F_{\pi}
$$

Question (Gessel-Reutenauer '93):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ symmetric?
Question (Adin-Roichman '13):
For which $A \subseteq \mathcal{S}_{n}$ is $\mathcal{Q}(A)$ Schur-positive?
A symmetric function is Schur-positive if all the coefficients in its expansion in the Schur basis are ≥ 0.
" A is Schur-positive" will mean " $\mathcal{Q}(A)$ is Schur-positive".
Define $\mathcal{Q}(A)$ similarly if A is a multiset.

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

- [Gessel '84]((%5Cmathcal%7BS%7D_%7Bn%7D).): Subsets of \mathcal{S}_{n} closed under Knuth relations.

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

- [Gessel '84]((%5Cmathcal%7BS%7D_%7Bn%7D).): Subsets of \mathcal{S}_{n} closed under Knuth relations.
- In particular, inverse descent classes

$$
\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\},
$$

where $J \subseteq[n-1]$.

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

- [Gessel '84]((%5Cmathcal%7BS%7D_%7Bn%7D).): Subsets of \mathcal{S}_{n} closed under Knuth relations.
- In particular, inverse descent classes

$$
\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\},
$$

where $J \subseteq[n-1]$.

- [Gessel-Reutenauer '93]: Subsets of \mathcal{S}_{n} closed under conjugation.

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

- [Gessel '84]((%5Cmathcal%7BS%7D_%7Bn%7D).): Subsets of \mathcal{S}_{n} closed under Knuth relations.
- In particular, inverse descent classes

$$
\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\},
$$

where $J \subseteq[n-1]$.

- [Gessel-Reutenauer '93]: Subsets of \mathcal{S}_{n} closed under conjugation. In particular,
- involutions,
- derangements.

Known Schur-positive sets

-

$$
\mathcal{Q}\left(\mathcal{S}_{n}\right)=\sum_{\lambda \vdash n}|\operatorname{SYT}(\lambda)| s_{\lambda} .
$$

- [Gessel '84]((%5Cmathcal%7BS%7D_%7Bn%7D).): Subsets of \mathcal{S}_{n} closed under Knuth relations.
- In particular, inverse descent classes

$$
\left\{\pi \in \mathcal{S}_{n}: \operatorname{Des}\left(\pi^{-1}\right)=J\right\}
$$

where $J \subseteq[n-1]$.

- [Gessel-Reutenauer '93]: Subsets of \mathcal{S}_{n} closed under conjugation. In particular,
- involutions,
- derangements.
- [Adin-Roichman '15]: Sets of the form $\left\{\pi \in \mathcal{S}_{n}: \operatorname{inv}(\pi)=k\right\}$.

A new Schur-positive set

$\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.

A new Schur-positive set

$\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.

Example: $546132 \in \mathcal{A}_{6}, 541632 \notin \mathcal{A}_{6}$.

A new Schur-positive set

$\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, 541632 \notin \mathcal{A}_{6}$.

Theorem (E.-Roichman '15)

\mathcal{A}_{n} is Schur-positive, and

$$
\mathcal{Q}\left(\mathcal{A}_{n}\right)=s_{n}+s_{1^{n}}+\sum_{k=2}^{n-2} s_{n-k, 2,1^{k-2}}+2 \sum_{k=1}^{n-2} s_{n-k, 1^{k}} .
$$

A new Schur-positive set

$\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, 541632 \notin \mathcal{A}_{6}$.

Theorem (E.-Roichman '15)

\mathcal{A}_{n} is Schur-positive, and

$$
\mathcal{Q}\left(\mathcal{A}_{n}\right)=s_{n}+s_{1^{n}}+\sum_{k=2}^{n-2} s_{n-k, 2,1^{k-2}}+2 \sum_{k=1}^{n-2} s_{n-k, 1^{k}}
$$

The proof constructs a Des-preserving bijection between \mathcal{A}_{n} and SYT of certain shapes.

A new Schur-positive set

$\pi \in \mathcal{S}_{n}$ is an arc permutation if every prefix of π forms an interval in \mathbb{Z}_{n}. Let $\mathcal{A}_{n}=$ set of arc permutations in \mathcal{S}_{n}.
Example: $546132 \in \mathcal{A}_{6}, 541632 \notin \mathcal{A}_{6}$.

Theorem (E.-Roichman '15)

\mathcal{A}_{n} is Schur-positive, and

$$
\mathcal{Q}\left(\mathcal{A}_{n}\right)=s_{n}+s_{1^{n}}+\sum_{k=2}^{n-2} s_{n-k, 2,1^{k-2}}+2 \sum_{k=1}^{n-2} s_{n-k, 1^{k}} .
$$

The proof constructs a
Des-preserving bijection between \mathcal{A}_{n} and SYT of certain shapes.

Incidentally,
$\mathcal{A}_{n}=\mathcal{S}_{n}(1324,1342,2413,2431,3124,3142,4213,4231)$.

Geometric grid classes

Let M be a $\{0,1,-1\}$-matrix.

$$
M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right)
$$

Geometric grid classes

Let M be a $\{0,1,-1\}$-matrix.
$M=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$

Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\} .
$$

Geometric grid classes

Let M be a $\{0,1,-1\}$-matrix.
$M=\left(\begin{array}{cc}0 & 1 \\ -1 & 0 \\ 1 & -1\end{array}\right)$

$62354781 \in \mathcal{G}_{8}(M)$
Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\}
$$

Geometric grid classes

Let M be a $\{0,1,-1\}$-matrix.

$$
M=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
1 & -1
\end{array}\right)
$$

$62354781 \in \mathcal{G}_{8}(M)$
Define the geometric grid class

$$
\mathcal{G}_{n}(M)=\left\{\pi \in \mathcal{S}_{n}: \pi \text { can be drawn on } \Gamma(M)\right\}
$$

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter '13)

Every geometric grid class can be characterized by avoidance of a finite set of patterns.

Examples of geometric grid classes

Examples of geometric grid classes

Arc permutations can be expressed as a union of two geometric grid classes:

Schur-positive geometric grid classes

[E.-Roichman '15]: One-column grid classes are Schur-positive.

Schur-positive geometric grid classes

[E.-Roichman '15]: One-column grid classes are Schur-positive.

[E.-Roichman '15]: Layered permutations are Schur-positive.

Vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

Vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

Example: $C_{4}=\{1234,2341,3412,4123\}$

Vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

Example: $C_{4}=\{1234,2341,3412,4123\}$
For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Vertical rotations

Let $c \in \mathcal{S}_{n}$ be the n-cycle $c=(1,2, \ldots, n)$, and let $C_{n}=\langle c\rangle=\left\{c^{k}: 0 \leq k<n\right\}$ be the subgroup it generates.

Example: $C_{4}=\{1234,2341,3412,4123\}$
For $A \subseteq \mathcal{S}_{n}, \quad C_{n} A$ is the multiset of vertical rotations of elements in A.

Theorem (E.-Roichman '15)

For a one-column grid class \mathcal{H}_{n}, the multiset $C_{n} \mathcal{H}_{n}$ is Schur-positive.

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Proof

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Proof

Arc permutations revisited

Corollary

\mathcal{A}_{n} is Schur-positive.

Proof

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n.
If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set $A \subseteq \mathcal{S}_{n-1}$, the set $A C_{n}$ is Schur-positive.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set $A \subseteq \mathcal{S}_{n-1}$, the set $A C_{n}$ is Schur-positive.

is Schur-positive.

Horizontal rotations

We can view \mathcal{S}_{n-1} as a subset of \mathcal{S}_{n} by fixing the last entry n. If $A \subseteq \mathcal{S}_{n-1}$, then $A C_{n} \subseteq \mathcal{S}_{n}$ is the set of horizontal rotations of elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set $A \subseteq \mathcal{S}_{n-1}$, the set $A C_{n}$ is Schur-positive.

For example, \mathcal{G}_{n}

is Schur-positive.

As a byproduct of the proof, we get a notion of cyclic descents on SYT of certain shapes.

Cyclic descents of permutations

The cyclic descent set of $\pi \in \mathcal{S}_{n}$ is

$$
\operatorname{cDes}(\pi)= \begin{cases}\operatorname{Des}(\pi) \cup\{n\} & \text { if } \pi_{n}>\pi_{1} \\ \operatorname{Des}(\pi) & \text { otherwise }\end{cases}
$$

Example: $\operatorname{cDes}(51432)=\{1,3,4\}, \quad c \operatorname{Des}(21543)=\{1,3,4,5\}$.

Cyclic descents of permutations

The cyclic descent set of $\pi \in \mathcal{S}_{n}$ is

$$
\operatorname{cDes}(\pi)= \begin{cases}\operatorname{Des}(\pi) \cup\{n\} & \text { if } \pi_{n}>\pi_{1} \\ \operatorname{Des}(\pi) & \text { otherwise }\end{cases}
$$

Example: $\mathrm{cDes}(51432)=\{1,3,4\}, \quad \operatorname{cDes}(21543)=\{1,3,4,5\}$.
Introduced by Cellini '95; further studied by Dilks, Petersen and Stembridge '09 among others.

Properties of cDes on permutations

For $D \subseteq[n]$, let $D+1$ be the subset of $[n]$ is obtained from D by adding $1 \bmod n$ to each element.

Properties of cDes on permutations

For $D \subseteq[n]$, let $D+1$ be the subset of $[n]$ is obtained from D by adding $1 \bmod n$ to each element.

The map cDes: $\mathcal{S}_{n} \rightarrow 2^{[n]}$ has two properties:
(a) $\operatorname{cDes}(\pi) \cap[n-1]=\operatorname{Des}(\pi) \quad \forall \pi \in \mathcal{S}_{n}$,

Properties of cDes on permutations

For $D \subseteq[n]$, let $D+1$ be the subset of $[n]$ is obtained from D by adding $1 \bmod n$ to each element.

The map cDes: $\mathcal{S}_{n} \rightarrow 2^{[n]}$ has two properties:
(a) $\operatorname{cDes}(\pi) \cap[n-1]=\operatorname{Des}(\pi) \quad \forall \pi \in \mathcal{S}_{n}$,
(b) there exists a bijection $\phi: \mathcal{S}_{n} \rightarrow \mathcal{S}_{n}$ such that

$$
\operatorname{cDes}(\phi(\pi))=\operatorname{cDes}(\pi)+1
$$

Properties of cDes on permutations

For $D \subseteq[n]$, let $D+1$ be the subset of $[n]$ is obtained from D by adding $1 \bmod n$ to each element.

The map cDes: $\mathcal{S}_{n} \rightarrow 2^{[n]}$ has two properties:
(a) $\operatorname{cDes}(\pi) \cap[n-1]=\operatorname{Des}(\pi) \quad \forall \pi \in \mathcal{S}_{n}$,
(b) there exists a bijection $\phi: \mathcal{S}_{n} \rightarrow \mathcal{S}_{n}$ such that

$$
\operatorname{cDes}(\phi(\pi))=\operatorname{cDes}(\pi)+1
$$

Indeed, we can just define ϕ by

$$
\pi_{1} \pi_{2} \ldots \pi_{n-1} \pi_{n} \quad \stackrel{\phi}{\longmapsto} \quad \pi_{n} \pi_{1} \pi_{2} \ldots \pi_{n-1}
$$

Standard Young Tableaux

A standard Young tableau (SYT) of skew shape λ / μ is a filling of the diagram of λ / μ with the numbers $1, \ldots, n$ (where $n=\#$ boxes) so that entries increase along rows and along columns.

Examples:

$$
\lambda=(4,3,1) \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 7 & \\
\hline 6 & & & \\
\hline
\end{array}
$$

Standard Young Tableaux

A standard Young tableau (SYT) of skew shape λ / μ is a filling of the diagram of λ / μ with the numbers $1, \ldots, n$ (where $n=\#$ boxes) so that entries increase along rows and along columns.

Examples:

$$
\begin{gathered}
\lambda=(4,3,1) \\
\lambda / \mu=(5,3,3,1) /(2,1)
\end{gathered}
$$

\[

\]

Standard Young Tableaux

A standard Young tableau (SYT) of skew shape λ / μ is a filling of the diagram of λ / μ with the numbers $1, \ldots, n$ (where $n=\#$ boxes) so that entries increase along rows and along columns.

Examples:

$$
\begin{aligned}
& \lambda=(4,3,1) \\
& \\
& \lambda / \mu=(5,3,3,1) /(2,1)
\end{aligned}
$$

Denote the set of all SYT of shape λ / μ by SYT (λ / μ).

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T)=\{i: i+1 \text { is in a lower row than } i\} .
$$

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T)=\{i: i+1 \text { is in a lower row than } i\} .
$$

Examples:

$$
T=\begin{array}{|l|l|l|l}
1 & 2 & 4 & 8 \\
\hline 3 & 5 & 7 & \\
\hline 6 & & & \operatorname{SYT}((4,3,1)) \quad \operatorname{Des}(T)=\{2,4,5\}, 0
\end{array}
$$

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T)=\{i: i+1 \text { is in a lower row than } i\} .
$$

Examples:

$$
T=\begin{array}{|l|l|l|l}
1 & 2 & 4 & 8 \\
\hline 3 & 5 & 7 & \\
\hline 6 & & & \operatorname{SYT}((4,3,1)) \quad \operatorname{Des}(T)=\{2,4,5\}, 0
\end{array}
$$

$$
T=\begin{array}{|l|l|l|l}
\cline { 2 - 4 } & 2 & 3 & 9 \\
\hline 1 & 5 & \\
\hline 4 & 7 & 8 &
\end{array} \in \operatorname{SYT}((5,3,3,1) /(2,1)) \quad \operatorname{Des}(T)=\{3,5\}
$$

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape λ / μ, a cyclic descent extension for λ / μ is a pair (cDes, ϕ), where
cDes: $\operatorname{SYT}(\lambda / \mu) \longrightarrow 2^{[n]}$, $\phi: \operatorname{SYT}(\lambda / \mu) \longrightarrow \operatorname{SYT}(\lambda / \mu)$ is a bijection,

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape λ / μ, a cyclic descent extension for λ / μ is a pair (cDes, ϕ), where
cDes: $\operatorname{SYT}(\lambda / \mu) \longrightarrow 2^{[n]}$, $\phi: \operatorname{SYT}(\lambda / \mu) \longrightarrow \operatorname{SYT}(\lambda / \mu)$ is a bijection, satisfying the following conditions for all $T \in \operatorname{SYT}(\lambda / \mu)$:
(a) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$,

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape λ / μ, a cyclic descent extension for λ / μ is a pair (cDes, ϕ), where
cDes: $\operatorname{SYT}(\lambda / \mu) \longrightarrow 2^{[n]}$, $\phi: \operatorname{SYT}(\lambda / \mu) \longrightarrow \operatorname{SYT}(\lambda / \mu)$ is a bijection, satisfying the following conditions for all $T \in \operatorname{SYT}(\lambda / \mu)$:
(a) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$,
(b) $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$.

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape λ / μ, a cyclic descent extension for λ / μ is a pair (cDes, ϕ), where cDes: $\operatorname{SYT}(\lambda / \mu) \longrightarrow 2^{[n]}$, $\phi: \operatorname{SYT}(\lambda / \mu) \longrightarrow \operatorname{SYT}(\lambda / \mu)$ is a bijection, satisfying the following conditions for all $T \in \operatorname{SYT}(\lambda / \mu)$:
(a) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$,
(b) $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$.

$$
\begin{aligned}
& T \\
& \operatorname{Des}(T) \\
& \{1,3\} \\
& \{2,4\} \\
& \text { \{3\} } \\
& \{1,4\} \\
& \text { \{2\} }
\end{aligned}
$$

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape λ / μ, a cyclic descent extension for λ / μ is a pair (cDes, ϕ), where cDes: $\operatorname{SYT}(\lambda / \mu) \longrightarrow 2^{[n]}$, $\phi: \operatorname{SYT}(\lambda / \mu) \longrightarrow \operatorname{SYT}(\lambda / \mu)$ is a bijection, satisfying the following conditions for all $T \in \operatorname{SYT}(\lambda / \mu)$:
(a) $c \operatorname{Des}(T) \cap[n-1]=\operatorname{Des}(T)$,
(b) $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$.

T	1	3	5	1	2	4	1	2	3	1	3	4	1	2	5
	2	4		3	5		4	5		2	5		3	4	
$\mathrm{cDes}(T)$	$\{1,3\}$			$\{2,4\}$			$\{3,5\}$			$\{1,4\}$			\{2, 5\}		

SYT of rectangular shapes

For $r \mid n$, let $\lambda=(r, \ldots, r) \vdash n$ be a rectangular shape.

SYT of rectangular shapes

For $r \mid n$, let $\lambda=(r, \ldots, r) \vdash n$ be a rectangular shape.

Theorem (Rhoades '10)

There exists a cyclic descent extension for $\lambda=(r, \ldots, r)$.

SYT of rectangular shapes

For $r \mid n$, let $\lambda=(r, \ldots, r) \vdash n$ be a rectangular shape.

Theorem (Rhoades '10)

There exists a cyclic descent extension for $\lambda=(r, \ldots, r)$.

Here, the bijection ϕ that shifts cDes is Schützenberger's jeu-de-taquin promotion operator p.

SYT of rectangular shapes

SYT of rectangular shapes

p determines a \mathbb{Z}_{n}-action. Here are the orbits for $\lambda=(3,3)$:

SYT of rectangular shapes

p determines a \mathbb{Z}_{n}-action. Here are the orbits for $\lambda=(3,3)$:

To define cDes on $T \in \operatorname{SYT}(r, \ldots, r)$, let

$$
n \in \operatorname{cDes}(T) \text { iff } n-1 \in \operatorname{Des}\left(p^{-1}(T)\right)
$$

SYT of rectangular shapes

p determines a \mathbb{Z}_{n}-action. Here are the orbits for $\lambda=(3,3)$:

To define cDes on $T \in \operatorname{SYT}(r, \ldots, r)$, let

$$
n \in \operatorname{cDes}(T) \text { iff } n-1 \in \operatorname{Des}\left(p^{-1}(T)\right)
$$

Cyclic descents on SYT $\left(\lambda^{\square}\right)$

For a partition $\lambda \vdash n-1$, let λ^{\square} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Cyclic descents on $\operatorname{SYT}\left(\lambda^{\square}\right)$

For a partition $\lambda \vdash n-1$, let λ^{\square} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Theorem (E.-Roichman '16)

For every $\lambda \vdash n-1$, there exists a cyclic descent extension for λ^{\square}.

Cyclic descents on $\operatorname{SYT}\left(\lambda^{\square}\right)$

For a partition $\lambda \vdash n-1$, let λ^{\square} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Theorem (E.-Roichman '16)

For every $\lambda \vdash n-1$, there exists a cyclic descent extension for λ^{\square}.

What is the definition of cDes and ϕ in this case?

Definition of cDes on SYT $\left(\lambda^{\square}\right)$

Example:

Definition of cDes on $\operatorname{SYT}\left(\lambda^{\square}\right)$

Example:

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, let $n \in \operatorname{cDes}(T)$ iff

- n is strictly higher than 1 , or
- $n-d \in \operatorname{Des}(\operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

Definition of cDes on $\operatorname{SYT}\left(\lambda^{\square}\right)$

Example:

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, let $n \in \operatorname{cDes}(T)$ iff

- n is strictly higher than 1 , or
- $n-d \in \operatorname{Des}(\operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

What is $\mathrm{jdt}(T-d)$?

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$T+3=$| 4 | 6 | 2 |
| :--- | :--- | :--- |
| 5 | 1 | |

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$T=$	1	3	5
2	4		$\quad T+3=$
:---	:---	:---	
5	1		

Let $\operatorname{jdt}(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$. Switch i with the larger of these two entries.

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$$
T=\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 5 \\
2 & 4 & & \\
\hline
\end{array} \quad T+3=\begin{array}{|l|l|l|}
\hline 4 & 6 & 2 \\
\hline 5 & 1 & \\
\hline
\end{array}
$$

Let $j d t(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$. Switch i with the larger of these two entries.

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$T=$	1	3	5
2	4		$\quad T+3=$
:---	:---	:---	
5	1		

Let $\operatorname{jdt}(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$.
Switch i with the larger of these two entries.

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$T=$	1	3	5
2	4		$\quad T+3=$
:---	:---	:---	
5	1		

Let $\operatorname{jdt}(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$.
Switch i with the larger of these two entries.

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$$
T=\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 5 \\
2 & 4 & & \\
\hline
\end{array} \quad T+3=\begin{array}{|l|l|l|}
\hline 4 & 6 & 2 \\
\hline 5 & 1 & \\
\hline
\end{array}
$$

Let $\operatorname{jdt}(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$.
Switch i with the larger of these two entries.

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, let $T+k$ be obtained by adding $k \bmod n$ to each entry.

$$
T=\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & & \\
\hline
\end{array} \quad T+3=\begin{array}{|l|l|l|}
\hline 4 & 6 & 2 \\
\hline 5 & 1 & \\
\hline
\end{array}
$$

Let $\operatorname{jdt}(T+k)$ be the SYT obtained from $T+k$ by repeatedly applying the following step:

- Let i be the minimal entry for which the entry immediately above or to its left is $>i$.
Switch i with the larger of these two entries.

Note: promotion is just $p(T)=\mathrm{jdt}(T+1), p^{-1}(T)=\mathrm{jdt}(T-1)$.

Definition of cDes on $\operatorname{SYT}\left(\lambda^{\square}\right)$

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, define $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- $n-d \in \operatorname{Des}(\operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

$T=$| 1 | 2 |
| :--- | :--- |
| 4 | |

Definition of cDes on $\operatorname{SYT}\left(\lambda^{\square}\right)$

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, define $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- $n-d \in \operatorname{Des}(j \operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

$T=$| | | |
| :--- | :--- | :---: |
| 4 | 2 | |
| 4 | | |

$$
T-3=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 1 &
\end{array}
$$

Definition of cDes on $\operatorname{SYT}\left(\lambda^{\square}\right)$

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, define $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- $n-d \in \operatorname{Des}(\operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

$T=$| 1 | 2 |
| :--- | :--- |
| 4 | 3 |$\quad T-3=$| 2 | 3 |
| :--- | :--- |
| 1 | 4 |\mapsto| 1 | 3 |
| :---: | :---: |$\quad=\mathrm{jdt}(T-3)$

Definition of cDes on SYT $\left(\lambda^{\square}\right)$

For $T \in \operatorname{SYT}\left(\lambda^{\square}\right)$, define $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- $n-d \in \operatorname{Des}(\operatorname{jdt}(T-d))$, where d is the letter in the disconnected cell of T.

$T=$| 1 | 2 |
| :--- | :--- |
| 4 | 3 |$\quad T-3=$| 2 | 3 |
| :--- | :--- |
| 1 | 4 |\mapsto| 1 | 3 |
| :---: | :---: | :---: |
| 2 | |$\quad=\operatorname{jdt}(T-3)$

$4 \in \mathrm{cDes}$

$$
4-3=1 \in \operatorname{Des}
$$

The bijection ϕ that shifts cDes on SYT $\left(\lambda^{\square}\right)$

The map $\phi: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ given by

$$
\phi(T)=\operatorname{jdt}(j \operatorname{dtt}(T-d)+d+1),
$$

where d is the letter in the disconnected cell of T, is a bijection such that $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$ for all T.

The bijection ϕ that shifts cDes on SYT $\left(\lambda^{\square}\right)$

The map $\phi: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ given by

$$
\phi(T)=\operatorname{jdt}(j \operatorname{dtt}(T-d)+d+1),
$$

where d is the letter in the disconnected cell of T, is a bijection such that $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$ for all T.
ϕ determines a \mathbb{Z}_{n}-action on $\operatorname{SYT}\left(\lambda^{\square}\right)$.

The bijection ϕ that shifts cDes on SYT $\left(\lambda^{\square}\right)$

The map $\phi: \operatorname{SYT}\left(\lambda^{\square}\right) \rightarrow \operatorname{SYT}\left(\lambda^{\square}\right)$ given by

$$
\phi(T)=\operatorname{jdt}(j \operatorname{dtt}(T-d)+d+1),
$$

where d is the letter in the disconnected cell of T, is a bijection such that $\mathrm{cDes}(\phi(T))=\mathrm{cDes}(T)+1$ for all T.
ϕ determines a \mathbb{Z}_{n}-action on $\operatorname{SYT}\left(\lambda^{\square}\right)$.
Example:

How about other shapes?

How about other shapes?

Definition

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 rectangle.

How about other shapes?

Definition

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 rectangle.

Fact: If λ / μ is a connected ribbon (other than a single row or column), then there is no cyclic descent extension for λ / μ.

How about other shapes?

Definition

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 rectangle.

Fact: If λ / μ is a connected ribbon (other than a single row or column), then there is no cyclic descent extension for λ / μ.

$\operatorname{Des}(T) \quad\{1\} \quad\{2\} \quad 3 ?$

How about other shapes?

Theorem (Adin-Reiner-Roichman '17)

For every skew shape λ / μ that is not a connected ribbon, there is a cyclic descent extension for λ / μ.

How about other shapes?

Theorem (Adin-Reiner-Roichman '17)

For every skew shape λ / μ that is not a connected ribbon, there is a cyclic descent extension for λ / μ.

The proof uses affine symmetric functions, Gromov-Witten invariants, and nonnegativity properties of Postnikov's toric Schur polynomials.

How about other shapes?

Theorem (Adin-Reiner-Roichman '17)

For every skew shape λ / μ that is not a connected ribbon, there is a cyclic descent extension for λ / μ.

The proof uses affine symmetric functions, Gromov-Witten invariants, and nonnegativity properties of Postnikov's toric Schur polynomials.

Unfortunately, it does not provide an explicit description of cDes on a given SYT.

How about other shapes?

Theorem (Adin-Reiner-Roichman '17)

For every skew shape λ / μ that is not a connected ribbon, there is a cyclic descent extension for λ / μ.

The proof uses affine symmetric functions, Gromov-Witten invariants, and nonnegativity properties of Postnikov's toric Schur polynomials.

Unfortunately, it does not provide an explicit description of cDes on a given SYT.

Question: Can we find an explicit description of cDes for other shapes λ / μ ?

Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)
We have explicit combinatorial descriptions of cDes for λ / μ of each of these shapes:

Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for λ / μ of each of these shapes:

(strip)

Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for λ / μ of each of these shapes:

(hook plus a box)

Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for λ / μ of each of these shapes:

(hook plus a box)

(two-row straight)

Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for λ / μ of each of these shapes:

(strip)

(hook plus a box)

(two-row straight)

(two-row skew)

Definition of cDes on strips

Let λ / μ be a strip of size n, i.e., a shape whose components are one-row or one-column shapes.

Definition of cDes on strips

Let λ / μ be a strip of size n, i.e., a shape whose components are one-row or one-column shapes.

For $T \in \operatorname{SYT}(\lambda / \mu)$, let $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- 1 and n are in the same vertical component.

Definition of cDes on strips

Let λ / μ be a strip of size n, i.e., a shape whose components are one-row or one-column shapes.

For $T \in \operatorname{SYT}(\lambda / \mu)$, let $n \in \operatorname{cDes}(T)$ iff

- n is strictly north of 1 , or
- 1 and n are in the same vertical component.

Again, the promotion operator $p: T \mapsto \mathrm{jdt}(T+1)$ shifts cDes :
p

cDes
$\{2,3\}$
$\{3,4\}$
$\{1,4\}$
$\{1,2\}$

cDes on hooks plus a box

Let $\lambda=\left(n-k-2,2,1^{k}\right)$, where $0 \leq k \leq n-4$.

Let $\lambda=\left(n-k-2,2,1^{k}\right)$, where $0 \leq k \leq n-4$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- $T_{2,2}-1$ is in the first column of T.

Let $\lambda=\left(n-k-2,2,1^{k}\right)$, where $0 \leq k \leq n-4$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- $T_{2,2}-1$ is in the first column of T.

For this shape, this definition of $c D e s$ is unique.

cDes on hooks plus a box

Let $\lambda=\left(n-k-2,2,1^{k}\right)$, where $0 \leq k \leq n-4$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- $T_{2,2}-1$ is in the first column of T.

For this shape, this definition of cDes is unique.
We have a complicated explicit definition of a bijection ϕ that shifts cDes. In this case it doesn't determine a \mathbb{Z}_{n}-action.

cDes on two-row straight shapes

Let $\lambda=(n-k, k)$, where $2 \leq k \leq n / 2$.

cDes on two-row straight shapes

Let $\lambda=(n-k, k)$, where $2 \leq k \leq n / 2$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- the last two entries in the second row of T are consecutive, that is, $T_{2, k}=T_{2, k-1}+1$;

cDes on two-row straight shapes

Let $\lambda=(n-k, k)$, where $2 \leq k \leq n / 2$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- the last two entries in the second row of T are consecutive, that is, $T_{2, k}=T_{2, k-1}+1$; and
- $T_{2, i-1}>T_{1, i}$ for every $1<i<k$.

cDes on two-row straight shapes

Let $\lambda=(n-k, k)$, where $2 \leq k \leq n / 2$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- the last two entries in the second row of T are consecutive, that is, $T_{2, k}=T_{2, k-1}+1$; and
- $T_{2, i-1}>T_{1, i}$ for every $1<i<k$.

Examples:
$9 \in \operatorname{cDes}\left(\begin{array}{l|l|l|l|}\hline 1 & 2 & 3 & 5 \\ \hline & 6 & 7 & \\ \hline & 6 & 7 & 8\end{array}\right)$ because $8=7+1,4>2$ and $6>3$.

cDes on two-row straight shapes

Let $\lambda=(n-k, k)$, where $2 \leq k \leq n / 2$.

For $T \in \operatorname{SYT}(\lambda)$, let $n \in \operatorname{cDes}(T)$ iff

- the last two entries in the second row of T are consecutive, that is, $T_{2, k}=T_{2, k-1}+1$; and
- $T_{2, i-1}>T_{1, i}$ for every $1<i<k$.

Examples:
$9 \in \operatorname{cDes}\left(\begin{array}{|l|l|l|l}\hline 1 & 2 & 3 & 5 \\ \hline 4 & 6 & 7 & 8 \\ \hline\end{array}\right)$ because $8=7+1,4>2$ and $6>3$.
$9 \notin \mathrm{cDes}\left(\begin{array}{l|l|l|l|}\hline 1 & 3 & 4 & 6 \\ \hline\end{array}\right)$ because $2<3$.

cDes on two-row straight shapes

- When $\lambda=(n-2,2)$, the definition of cDes viewed as a two-row shape coincides with the definition viewed as a hook plus a box.

cDes on two-row straight shapes

- When $\lambda=(n-2,2)$, the definition of cDes viewed as a two-row shape coincides with the definition viewed as a hook plus a box.

- For $\lambda=(r, r)$, the definition of cDes viewed as a two-row shape coincides with Rhoades' definition viewed as a rectangular shape.

ϕ on two-row straight shapes

For two-row straight shapes, we have an explicit definition of a map ϕ that shifts cDes , but it does not determine a \mathbb{Z}_{n}-action.
(cDes in red)

cDes on two-row skew shapes

Let $\lambda / \mu=(n-k+m, k) /(m)$ with $k \neq m+1$.

Let $\lambda / \mu=(n-k+m, k) /(m)$ with $k \neq m+1$.

We have two different definitions of cDes on λ / μ that work, but both are complicated.

cDes on two-row skew shapes

Let $\lambda / \mu=(n-k+m, k) /(m)$ with $k \neq m+1$.

We have two different definitions of c Des on λ / μ that work, but both are complicated.

We have no explicit description of ϕ in this case.

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.

Example: Let $\lambda / \mu=(4,2) /(2)$.

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.
Example: Let $\lambda / \mu=(4,2) /(2)$.

Our definition of cDes:
\{1\}
\{2\}
\{3\}
\{4\}
$\{1,3\}$
$\{2,4\}$

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.
Example: Let $\lambda / \mu=(4,2) /(2)$.

Our definition of cDes:
\{1\}
\{2\}
\{3\}
\{4\}
$\{1,3\}$
$\{2,4\}$

Another possible definition of cDes:
\{1\}
$\{2,4\}$
\{3\}
\{4\}
$\{1,3\}$
\{2\}

Uniqueness of cDes for near-hooks

Theorem (Adin-E.-Roichman '17)

Suppose that either λ / μ or its 180°-rotation is "one cell away from a hook", i.e.

hook minus its corner cell

hook plus a disconnected cell

hook plus an internal cell

Then cDes on $\operatorname{SYT}(\lambda / \mu)$ is uniquely defined.

Non-uniqueness of ϕ

Even for shapes where cDes in unique, different definitions of ϕ may give different orbit lengths:

Non-uniqueness of ϕ

Even for shapes where cDes in unique, different definitions of ϕ may give different orbit lengths:

VS.
(cDes in red)

Non-uniqueness of ϕ

Even for shapes where cDes in unique, different definitions of ϕ may give different orbit lengths:

(cDes in red)

Open problems

For each non-ribbon shape λ / μ :

- Find an explicit combinatorial description of cDes on $\operatorname{SYT}(\lambda / \mu)$.

Open problems

For each non-ribbon shape λ / μ :

- Find an explicit combinatorial description of cDes on SYT (λ / μ).
- Describe an explicit bijection ϕ that shifts cDes cyclically and, ideally, generates a \mathbb{Z}_{n}-action.

Open problems

For each non-ribbon shape λ / μ :

- Find an explicit combinatorial description of cDes on SYT (λ / μ).
- Describe an explicit bijection ϕ that shifts cDes cyclically and, ideally, generates a \mathbb{Z}_{n}-action.
- Find an explicit involution on $\operatorname{SYT}(\lambda / \mu)$ that sends c Des to its negative (modulo n).
(Adin-Reiner-Roichman prove that such an involution exists.)

Open problems

For each non-ribbon shape λ / μ :

- Find an explicit combinatorial description of cDes on SYT (λ / μ).
- Describe an explicit bijection ϕ that shifts cDes cyclically and, ideally, generates a \mathbb{Z}_{n}-action.
- Find an explicit involution on $\operatorname{SYT}(\lambda / \mu)$ that sends c Des to its negative (modulo n).
(Adin-Reiner-Roichman prove that such an involution exists.)

Thanks!

Also:
Permutation Patterns Dartmouth College July 9-14, 2018

