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Permutations and quasisymmetric functions

Let π = π1 . . . πn ∈ Sn be a permutation.

The descent set of a π is

Des(π) = {i ∈ [n − 1] : πi > πi+1}.

Example: Des(51432) = {1, 3, 4}.

Define the fundamental quasisymmetric function

Fπ =
∑

i1≤i2≤...≤in
ij<ij+1 if j∈Des(π)

xi1xi2 · · · xin .

Example: For π = 132, Des(π) = {2} and

F132 =
∑

i1≤i2<i3

xi1xi2xi3 = x2
1x2+x2

1x3+x2
2x3+· · ·+x1x2x3+x1x2x4+. . . .

Quasisymmetric: coeff of xα1
i1
. . . xαk

ik
is the same for any i1 < · · · < ik .
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Permutations and quasi-symmetric functions

For A ⊆ Sn, let
Q(A) =

∑
π∈A

Fπ.

Question (Gessel–Reutenauer ’93):
For which A ⊆ Sn is Q(A) symmetric?

Question (Adin–Roichman ’13):
For which A ⊆ Sn is Q(A) Schur-positive?

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are ≥ 0.

“A is Schur-positive” will mean “Q(A) is Schur-positive”.

Define Q(A) similarly if A is a multiset.
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Known Schur-positive sets

[Gessel ’84]: Sn. Q(Sn) =
∑
λ`n
|SYT(λ)| sλ.

[Gessel ’84]: Subsets of Sn closed under Knuth relations.

In particular, inverse descent classes

{π ∈ Sn : Des(π−1) = J},

where J ⊆ [n − 1].

[Gessel–Reutenauer ’93]: Subsets of Sn closed under
conjugation. In particular,

involutions,
derangements.

[Adin–Roichman ’15]: Sets of the form {π ∈ Sn : inv(π) = k}.
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A new Schur-positive set

π ∈ Sn is an arc permutation if every prefix of π forms an interval
in Zn. Let An = set of arc permutations in Sn.

Example: 546132 ∈ A6, 541632 6∈ A6.

Theorem (E.–Roichman ’15)

An is Schur-positive, and

Q(An) = sn + s1n +
n−2∑
k=2

sn−k,2,1k−2 + 2
n−2∑
k=1

sn−k,1k .

The proof constructs a
Des-preserving bijection between
An and SYT of certain shapes.

Incidentally,
An = Sn(1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231).
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Geometric grid classes

Let M be a {0, 1,−1}-matrix.

M =

 0 1
−1 0
1 −1

 Γ(M) =

6

2 3
5 4

7 8

1

62354781 ∈ G8(M)

Define the geometric grid class

Gn(M) = {π ∈ Sn : π can be drawn on Γ(M)}.

Theorem (Albert, Atkinson, Bouvel, Ruškuc, Vatter ’13)

Every geometric grid class can be characterized by avoidance of a
finite set of patterns.
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Examples of geometric grid classes

Gn



 = Sn(321, 2143, 2413).

Arc permutations can be expressed as a union of two geometric
grid classes:

An = Gn


 ∪ Gn


 .
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Schur-positive geometric grid classes

[E.-Roichman ’15]: One-column grid classes are Schur-positive.

Q

G5



 = s5+2 s4,1+2 s3,2+3 s3,12+4 s22,1+4 s2,13+s15 .

[E.-Roichman ’15]: Layered permutations are Schur-positive.

Q

Gn



 = sn + sn−1,1 + sn−2,12 .
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Vertical rotations

Let c ∈ Sn be the n-cycle c = (1, 2, . . . , n), and let
Cn = 〈c〉 = {ck : 0 ≤ k < n} be the subgroup it generates.

Example: C4 = {1234, 2341, 3412, 4123}

For A ⊆ Sn, CnA is the multiset of vertical rotations of elements
in A.

Theorem (E.-Roichman ’15)

For a one-column grid class Hn, the multiset CnHn is
Schur-positive.
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Arc permutations revisited

Corollary
An is Schur-positive.

Proof

Cn × = 2 + 2 = 2An.
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Horizontal rotations

We can view Sn−1 as a subset of Sn by fixing the last entry n.

If A ⊆ Sn−1, then ACn ⊆ Sn is the set of horizontal rotations of
elements in A.

Theorem (E.-Roichman ’16)

For every Schur-positive set A ⊆ Sn−1, the set ACn is
Schur-positive.

For example, Gn


 is Schur-positive.

As a byproduct of the proof, we get a notion of cyclic descents on
SYT of certain shapes.
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Cyclic descents of permutations

The cyclic descent set of π ∈ Sn is

cDes(π) =

{
Des(π) ∪ {n} if πn > π1,

Des(π) otherwise.

Example: cDes(51432) = {1, 3, 4}, cDes(21543) = {1, 3, 4, 5}.

Introduced by Cellini ’95; further studied by Dilks, Petersen and
Stembridge ’09 among others.
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Properties of cDes on permutations

For D ⊆ [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : Sn → 2[n] has two properties:

(a) cDes(π) ∩ [n − 1] = Des(π) ∀π ∈ Sn,

(b) there exists a bijection φ : Sn → Sn such that

cDes(φ(π)) = cDes(π) + 1.

Indeed, we can just define φ by

π1π2 . . . πn−1πn
φ7−→ πnπ1π2 . . . πn−1
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Standard Young Tableaux

A standard Young tableau (SYT) of skew shape λ/µ is a filling of
the diagram of λ/µ with the numbers 1, . . . , n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

λ = (4, 3, 1)
1 2 4 8
3 5 7
6

λ/µ = (5, 3, 3, 1)/(2, 1)

2 3 9
1 5

4 7 8
6

Denote the set of all SYT of shape λ/µ by SYT(λ/µ).
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Descents of SYT

The descent set of a standard Young tableau T is

Des(T ) = {i : i + 1 is in a lower row than i}.

Examples:

T =
1 2 4 8
3 5 7
6

∈ SYT((4, 3, 1)) Des(T ) = {2, 4, 5}

T =

2 3 9
1 5

4 7 8
6

∈ SYT((5, 3, 3, 1)/(2, 1)) Des(T ) = {3, 5}
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition
For a given shape λ/µ, a cyclic descent extension for λ/µ is a pair
(cDes, φ), where
cDes : SYT(λ/µ) −→ 2[n],
φ : SYT(λ/µ) −→ SYT(λ/µ) is a bijection,
satisfying the following conditions for all T ∈ SYT(λ/µ):
(a) cDes(T ) ∩ [n − 1] = Des(T ),
(b) cDes(φ(T )) = cDes(T ) + 1.

T 1 3 5
2 4

1 2 4
3 5

1 2 3
4 5

1 3 4
2 5

1 2 5
3 4

{1, 3} {2, 4} {3} {1, 4} {2}
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Definition
For a given shape λ/µ, a cyclic descent extension for λ/µ is a pair
(cDes, φ), where
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φ : SYT(λ/µ) −→ SYT(λ/µ) is a bijection,
satisfying the following conditions for all T ∈ SYT(λ/µ):
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition
For a given shape λ/µ, a cyclic descent extension for λ/µ is a pair
(cDes, φ), where
cDes : SYT(λ/µ) −→ 2[n],
φ : SYT(λ/µ) −→ SYT(λ/µ) is a bijection,
satisfying the following conditions for all T ∈ SYT(λ/µ):
(a) cDes(T ) ∩ [n − 1] = Des(T ),
(b) cDes(φ(T )) = cDes(T ) + 1.
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition
For a given shape λ/µ, a cyclic descent extension for λ/µ is a pair
(cDes, φ), where
cDes : SYT(λ/µ) −→ 2[n],
φ : SYT(λ/µ) −→ SYT(λ/µ) is a bijection,
satisfying the following conditions for all T ∈ SYT(λ/µ):
(a) cDes(T ) ∩ [n − 1] = Des(T ),
(b) cDes(φ(T )) = cDes(T ) + 1.

T 1 3 5
2 4

1 2 4
3 5

1 2 3
4 5

1 3 4
2 5

1 2 5
3 4

cDes(T ) {1, 3} {2, 4} {3, 5} {1, 4} {2, 5}
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SYT of rectangular shapes

For r | n, let λ = (r , . . . , r) ` n be a rectangular shape.

Theorem (Rhoades ’10)

There exists a cyclic descent extension for λ = (r , . . . , r).

Here, the bijection φ that shifts cDes is Schützenberger’s
jeu-de-taquin promotion operator p.
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SYT of rectangular shapes

1 3 4
2 5 6

→ 1 3 4
2 5

→ 1 3 4
2 5

→ 1 4
2 3 5

→ 1 4
2 3 5

→ 1 2 5
3 4 6

p

p−1

5 /∈ Des 6 /∈ cDes

p determines a Zn-action. Here are the orbits for λ = (3, 3):

T
1 3 4
2 5 6

p7→ 1 2 5
3 4 6

p7→ 1 2 3
4 5 6

p

{1, 4} {2, 5} {3}

1 3 5
2 4 6

p7→ 1 2 4
3 5 6

p

{1, 3, 5} {2, 4}

To define cDes on T ∈ SYT(r , . . . , r), let

n ∈ cDes(T ) iff n − 1 ∈ Des(p−1(T )).
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1 3 4
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→ 1 4
2 3 5
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p
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To define cDes on T ∈ SYT(r , . . . , r), let

n ∈ cDes(T ) iff n − 1 ∈ Des(p−1(T )).
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Cyclic descents on SYT(λ�)

For a partition λ ` n − 1, let λ� be the skew shape obtained from
λ by placing a disconnected box at its upper right corner.

(3, 3, 1)� =

Theorem (E.-Roichman ’16)

For every λ ` n − 1, there exists a cyclic descent extension for λ�.

What is the definition of cDes and φ in this case?
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Definition of cDes on SYT(λ�)

Example:

4
1 3
2

1
2 4
3

2
1 3
4

3
1 2
4

{1, 4} {1, 2} {2, 3} {3, 4}

For T ∈ SYT(λ�), let n ∈ cDes(T ) iff
n is strictly higher than 1, or
n − d ∈ Des(jdt(T − d)), where d is the letter in the
disconnected cell of T .

What is jdt(T − d)?
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes,
let T + k be obtained by
adding k mod n to each entry.

T =
6

1 3 5
2 4

T + 3 =
3

4 6 2
5 1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

Let i be the minimal entry for which the entry immediately
above or to its left is > i .
Switch i with the larger of these two entries.

3
4 6 2
5 1

7→
3

4 1 2
5 6

7→
3

1 4 2
5 6

7→
3

1 2 4
5 6

= jdt(T+3)

Note: promotion is just p(T ) = jdt(T + 1), p−1(T ) = jdt(T − 1).
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Definition of cDes on SYT(λ�)

4
1 3
2

1
2 4
3

2
1 3
4

3
1 2
4

{1, 4} {1, 2} {2, 3} {3, 4}

For T ∈ SYT(λ�), define n ∈ cDes(T ) iff
n is strictly north of 1, or
n − d ∈ Des(jdt(T − d)), where d is the letter in the
disconnected cell of T .

T =
3

1 2
4

T − 3 =
4

2 3
1

7→
4

1 3
2

= jdt(T − 3)

4 ∈ cDes 4− 3 = 1 ∈ Des
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The bijection φ that shifts cDes on SYT(λ�)

The map φ : SYT(λ�)→ SYT(λ�) given by

φ(T ) = jdt ( jdt(T − d) + d + 1 ) ,

where d is the letter in the disconnected cell of T ,
is a bijection such that cDes(φ(T )) = cDes(T ) + 1 for all T .

φ determines a Zn-action on SYT(λ�).

Example:

6
1 3 5
2 4

φ7→
1

2 4 6
3 5

φ7→
2

1 3 5
4 6

φ7→
3

1 2 4
5 6

φ7→
4

1 3 5
2 6

φ7→
5

1 2 4
3 6

φ

cDes {1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}

Sergi Elizalde Schur-positive grid classes and cyclic descents of SYT



Permutations and Schur-positivity Defining cyclic descents Cyclic descents of SYT Final remarks

The bijection φ that shifts cDes on SYT(λ�)

The map φ : SYT(λ�)→ SYT(λ�) given by

φ(T ) = jdt ( jdt(T − d) + d + 1 ) ,

where d is the letter in the disconnected cell of T ,
is a bijection such that cDes(φ(T )) = cDes(T ) + 1 for all T .

φ determines a Zn-action on SYT(λ�).

Example:

6
1 3 5
2 4

φ7→
1

2 4 6
3 5

φ7→
2

1 3 5
4 6

φ7→
3

1 2 4
5 6

φ7→
4

1 3 5
2 6

φ7→
5

1 2 4
3 6

φ

cDes {1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}

Sergi Elizalde Schur-positive grid classes and cyclic descents of SYT



Permutations and Schur-positivity Defining cyclic descents Cyclic descents of SYT Final remarks

The bijection φ that shifts cDes on SYT(λ�)

The map φ : SYT(λ�)→ SYT(λ�) given by

φ(T ) = jdt ( jdt(T − d) + d + 1 ) ,

where d is the letter in the disconnected cell of T ,
is a bijection such that cDes(φ(T )) = cDes(T ) + 1 for all T .

φ determines a Zn-action on SYT(λ�).

Example:

6
1 3 5
2 4

φ7→
1

2 4 6
3 5

φ7→
2

1 3 5
4 6

φ7→
3

1 2 4
5 6

φ7→
4

1 3 5
2 6

φ7→
5

1 2 4
3 6

φ

cDes {1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}

Sergi Elizalde Schur-positive grid classes and cyclic descents of SYT



Permutations and Schur-positivity Defining cyclic descents Cyclic descents of SYT Final remarks

How about other shapes?

Definition
A connected skew shape λ/µ is a ribbon if it does not contain a
2× 2 rectangle.

Fact: If λ/µ is a connected ribbon (other than a single row or
column), then there is no cyclic descent extension for λ/µ.

1 3
2

1 2
3

Des(T ) {1} {2} 3?
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How about other shapes?

Theorem (Adin–Reiner–Roichman ’17)

For every skew shape λ/µ that is not a connected ribbon, there is a
cyclic descent extension for λ/µ.

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov’s toric Schur
polynomials.

Unfortunately, it does not provide an explicit description of cDes on
a given SYT.

Question: Can we find an explicit description of cDes for other
shapes λ/µ?
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman ’17)

We have explicit combinatorial descriptions of cDes for λ/µ of each
of these shapes:

(strip) (hook plus a box)

(two-row straight) (two-row skew)
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Definition of cDes on strips

Let λ/µ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes.

For T ∈ SYT(λ/µ), let n ∈ cDes(T ) iff
n is strictly north of 1, or
1 and n are in the same vertical component.

Again, the promotion operator p : T 7→ jdt(T + 1) shifts cDes:

1 2
3
4

p7→
2 3

1
4

p7→
3 4

1
2

p7→
1 4

2
3

p

cDes {2, 3} {3, 4} {1, 4} {1, 2}
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cDes on hooks plus a box

Let λ = (n − k − 2, 2, 1k), where 0 ≤ k ≤ n − 4.

For T ∈ SYT(λ), let n ∈ cDes(T ) iff
T2,2 − 1 is in the first column of T .

For this shape, this definition of cDes is unique.

We have a complicated explicit definition of a bijection φ that
shifts cDes. In this case it doesn’t determine a Zn-action.
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cDes on two-row straight shapes

Let λ = (n − k , k), where 2 ≤ k ≤ n/2.

For T ∈ SYT(λ), let n ∈ cDes(T ) iff
the last two entries in the second row of T are consecutive,
that is, T2,k = T2,k−1 + 1; and
T2,i−1 > T1,i for every 1 < i < k .

Examples:

9 ∈ cDes

(
1 2 3 5 9
4 6 7 8

)
because 8 = 7 + 1, 4 > 2 and 6 > 3.

9 /∈ cDes

(
1 3 4 6 9
2 5 7 8

)
because 2 < 3.
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cDes on two-row straight shapes

When λ = (n − 2, 2), the definition of cDes viewed as a
two-row shape coincides with the definition viewed as a hook
plus a box.

For λ = (r , r), the definition of cDes viewed as a two-row
shape coincides with Rhoades’ definition viewed as a
rectangular shape.
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φ on two-row straight shapes

For two-row straight shapes, we have an explicit definition of a map
φ that shifts cDes, but it does not determine a Zn-action.

1 3 5 6 7
2 4 8 9

φ7→ 1 2 4 7 8
3 5 6 9

φ7→ 1 2 3 5 9
4 6 7 8

φ7→ 1 3 4 6 9
2 5 7 8

φ7→ 1 2 5 7 9
3 4 6 8

φ7→ 1 2 3 6 8
4 5 7 9

φ7→ 1 2 3 4 7
5 6 8 9

φ7→ 1 3 4 5 8
2 6 7 9

φ7→ 1 2 4 5 6
3 7 8 9

(cDes in red)
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cDes on two-row skew shapes

Let λ/µ = (n − k + m, k)/(m) with k 6= m + 1.

We have two different definitions of cDes on λ/µ that work, but
both are complicated.

We have no explicit description of φ in this case.
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Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.

Example: Let λ/µ = (4, 2)/(2).

1 4
2 3

1 2
3 4

2 3
1 4

3 4
1 2

1 3
2 4

2 4
1 3

Our definition of cDes:

{1} {2} {3} {4} {1, 3} {2, 4}

Another possible definition of cDes:

{1} {2, 4} {3} {4} {1, 3} {2}
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Uniqueness of cDes for near-hooks

Theorem (Adin-E.-Roichman ’17)

Suppose that either λ/µ or its 180o-rotation is “one cell away from
a hook”, i.e.

hook minus its
corner cell

hook plus a
disconnected cell

hook plus an
internal cell

Then cDes on SYT(λ/µ) is uniquely defined.

Sergi Elizalde Schur-positive grid classes and cyclic descents of SYT



Permutations and Schur-positivity Defining cyclic descents Cyclic descents of SYT Final remarks

Non-uniqueness of φ

Even for shapes where cDes in unique, different definitions of φ
may give different orbit lengths:

1 3 5
2 4
6 1 2 4

3 6
5

1 3 5
2 6
4

1 2 6
3 4
5

v vs.

1 3 5
2 4
6

1 2 6
3 4
5

v

1 3 5
2 6
4

1 2 4
3 6
5

v

(cDes in red)
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Open problems

For each non-ribbon shape λ/µ:
Find an explicit combinatorial description of cDes on
SYT(λ/µ).

Describe an explicit bijection φ that shifts cDes cyclically and,
ideally, generates a Zn-action.
Find an explicit involution on SYT(λ/µ) that sends cDes to its
negative (modulo n).
(Adin–Reiner–Roichman prove that such an involution exists.)

Thanks!
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Also:

Permutation Patterns
Dartmouth College
July 9-14, 2018
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