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Permutations and quasisymmetric functions

Let m =m...7, €S, be a permutation.

The descent set of a 7 is
Des(m)={ie[n—1]: 7 > mis1}.

Example: Des(51432) = {1, 3,4}.
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Permutations and quasisymmetric functions

Let m =m...7, €S, be a permutation.

The descent set of a 7 is
Des(m)={ie[n—1]: 7 > mis1}.
Example: Des(51432) = {1, 3,4}.

Define the fundamental quasisymmetric function

Fr = E Xiy Xiy * ** X, -

1<i<...<ip
ij<ijy1 if jeDes(m)
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Permutations and quasisymmetric functions

Let m =m...7, €S, be a permutation.

The descent set of a 7 is
Des(m)={ie[n—1]: 7 > mis1}.
Example: Des(51432) = {1, 3,4}.

Define the fundamental quasisymmetric function

Fr = E Xiy Xiy * ** X, -

1<i<...<ip
ij<ijy1 if jeDes(m)

Example: For m = 132, Des(7) = {2} and

2 2 2
Fi3 = E Xiy Xjy Xiy = X{ X0 +X] X3+X5 X3+ - -+X1 X0X3+X1 X0 X8+ . . .
1<i2<i3

Ok

Quasisymmetric: coeff of x;"* .. .x;, " is the same for any i <+ <.
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Permutations and quasi-symmetric functions

For AC S, let
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Permutations and quasi-symmetric functions

For AC S, let
QA) => Fr

TEA

Question (Gessel-Reutenauer '93):
For which A C S, is Q(A) symmetric?
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Permutations and quasi-symmetric functions

For AC S, let
QA) => Fr

TEA

Question (Gessel-Reutenauer '93):
For which A C S, is Q(A) symmetric?

Question (Adin—Roichman '13):
For which A C S, is Q(A) Schur-positive?

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are > 0.
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Permutations and quasi-symmetric functions

For AC S, let
QA) => Fr

TEA

Question (Gessel-Reutenauer '93):
For which A C S, is Q(A) symmetric?

Question (Adin—Roichman '13):
For which A C S, is Q(A) Schur-positive?

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are > 0.

“A is Schur-positive” will mean “O(A) is Schur-positive”.
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Permutations and quasi-symmetric functions

For AC S, let

Question (Gessel-Reutenauer '93):
For which A C S, is Q(A) symmetric?

Question (Adin—Roichman '13):
For which A C S, is Q(A) Schur-positive?

A symmetric function is Schur-positive if all the coefficients in its
expansion in the Schur basis are > 0.

“A is Schur-positive” will mean “O(A) is Schur-positive”.

Define O(A) similarly if A is a multiset.
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An

o [Gessel '84]: Subsets of S, closed under Knuth relations.
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An

o [Gessel '84]: Subsets of S, closed under Knuth relations.

e In particular, inverse descent classes
{n €8,: Des(n™t) = J},

where J C [n —1].
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An

o [Gessel '84]: Subsets of S, closed under Knuth relations.

e In particular, inverse descent classes
{n €8,: Des(n™t) = J},

where J C [n —1].

o [Gessel-Reutenauer '93]: Subsets of S, closed under
conjugation.
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An

o [Gessel '84]: Subsets of S, closed under Knuth relations.

e In particular, inverse descent classes
{n €8,: Des(n™t) = J},

where J C [n —1].

o [Gessel-Reutenauer '93]: Subsets of S, closed under
conjugation. In particular,

e involutions,
e derangements.
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Known Schur-positive sets

o [Gessel '84]: S,. A(Sn) = > |SYT(N)|sn.
An

o [Gessel '84]: Subsets of S, closed under Knuth relations.

e In particular, inverse descent classes
{n €8,: Des(n™t) = J},

where J C [n —1].

o [Gessel-Reutenauer '93]: Subsets of S, closed under
conjugation. In particular,

e involutions,
e derangements.

e [Adin—Roichman "15]: Sets of the form {7 € S,, : inv(7) = k}.
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A new Schur-positive set

m € S, is an arc permutation if every prefix of 7 forms an interval
in Z,. Let A, = set of arc permutations in S,.
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A new Schur-positive set

m € S, is an arc permutation if every prefix of 7 forms an interval
in Z,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ As.
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A new Schur-positive set

m € S, is an arc permutation if every prefix of 7 forms an interval
in Z,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ Ag.

Theorem (E.—Roichman '15)

A, is Schur-positive, and

n—2 n—2
Q(An) = sp+ 510 + Z Sn—k,2,1k—2 T 2 Z Sn—k,1k-

k=2 k=1
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A new Schur-positive set

m € S, is an arc permutation if every prefix of 7 forms an interval
in Z,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ Ag.

Theorem (E.—Roichman '15)

A, is Schur-positive, and

n—2 n—2
Q(An) = sp+ 510 + Z Sn—k,2,1k—2 T 2 Z Sn—k,1k-

k=2 k=1

The proof constructs a [ 1] [ ]
Des-preserving bijection between .
A, and SYT of certain shapes. —

Schur-positive grid classes and cyclic descents of SYT



Permutations and Schur-positivity

[e]e]e] le]ele]elele)

A new Schur-positive set

m € S, is an arc permutation if every prefix of 7 forms an interval
in Z,. Let A, = set of arc permutations in S,.

Example: 546132 € Ag, 541632 ¢ Ag.

Theorem (E.—Roichman '15)

A, is Schur-positive, and

n—2 n—2
Q(An) = sp+ 510 + Z Sn—k,2,1k—2 T 2 Z Sn—k,1k-

k=2 k=1

The proof constructs a [ 1] [ ]
Des-preserving bijection between .
A, and SYT of certain shapes. —

Incidentally,
Ay = Sn(1324,1342,2413, 2431, 3124, 3142, 4213, 4231).
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Geometric grid classes

Let M be a {0,1, —1}-matrix.
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Geometric grid classes

Let M be a {0,1, —1}-matrix.

M = -1 0 r(M) =

Define the geometric grid class

Gn(M) ={m €S, : mcan be drawn on I'(M)}.
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Geometric grid classes

Let M be a {0,1, —1}-matrix.

M = -1 0 r(M) =

62354781 € Gg(M)

Define the geometric grid class

Gn(M) ={m €S, : mcan be drawn on I'(M)}.
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Geometric grid classes

Let M be a {0,1, —1}-matrix.

62354781 € Gg(M)

Define the geometric grid class

Gn(M) ={m €S, : mcan be drawn on I'(M)}.

Theorem (Albert, Atkinson, Bouvel, Ruskuc, Vatter '13)

Every geometric grid class can be characterized by avoidance of a
finite set of patterns.
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Examples of geometric grid classes

Gn = Sn(321,2143,2413).
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Examples of geometric grid classes

Gn = Sn(321,2143,2413).

Arc permutations can be expressed as a union of two geometric
grid classes:

An:gn U gn
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Schur-positive geometric grid classes

[E.-Roichman '15]: One-column grid classes are Schur-positive.

Q| Gs = S5+2541+2532+3 53 12+4 502 1 +4 5 13+575.
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Schur-positive geometric grid classes

[E.-Roichman '15]: One-column grid classes are Schur-positive.

Q| Gs = S5+2541+2532+3 53 12+4 502 1 +4 5 13+575.

[E.-Roichman '15]: Layered permutations are Schur-positive.

Q| Gn / = Sp+ Sp—1,1 + Sp_212-
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Vertical rotations

Let ¢ € S, be the n-cycle ¢ = (1,2,...,n), and let
Co = (c) = {c¥: 0 < k < n} be the subgroup it generates.
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Vertical rotations

Let ¢ € S, be the n-cycle ¢ = (1,2,...,n), and let
Co = (c) = {c¥: 0 < k < n} be the subgroup it generates.

Example: G4 = {1234,2341,3412,4123}
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Vertical rotations

Let ¢ € S, be the n-cycle ¢ = (1,2,...,n), and let
Co = (c) = {c¥: 0 < k < n} be the subgroup it generates.

Example: G4 = {1234,2341,3412,4123}

For ACS,, C,A is the multiset of vertical rotations of elements
in A.
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Vertical rotations

Let ¢ € S, be the n-cycle ¢ = (1,2,...,n), and let
Co = (c) = {c¥: 0 < k < n} be the subgroup it generates.

Example: G4 = {1234,2341,3412,4123}

For ACS,, C,A is the multiset of vertical rotations of elements
in A.

Theorem (E.-Roichman '15)

For a one-column grid class H,,, the multiset C,/H,, is
Schur-positive.
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Arc permutations revisited

A, is Schur-positive.
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Arc permutations revisited

A, is Schur-positive.

Proof

C, x
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Arc permutations revisited

A, is Schur-positive.

Proof

Cn X =2 +2
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Arc permutations revisited

A, is Schur-positive.

Proof

Cn X = 2 +2 2./4,7
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set A C S,_1, the set AC, is
Schur-positive.
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of
elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set A C S,_1, the set AC, is
Schur-positive.

For example, G, is Schur-positive.

/
/
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Horizontal rotations

We can view S,_1 as a subset of S, by fixing the last entry n.

If AC S,_1, then AC,, C S, is the set of horizontal rotations of

elements in A.

Theorem (E.-Roichman '16)

For every Schur-positive set A C S,_1, the set AC, is
Schur-positive.

For example, G,

/
/

is Schur-positive.

As a byproduct of the proof, we get a notion of cyclic descents on

SYT of certain shapes.
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Cyclic descents of permutations

The cyclic descent set of 7 € S, is

<Des() Des(m) U {n} if mp > m1,
m) =
Des() otherwise.

Example: cDes(51432) = {1,3,4}, cDes(21543) = {1,3,4,5}.
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Defining cyclic descents
©0000

Cyclic descents of permutations

The cyclic descent set of 7 € S, is

<Des() Des(m) U {n} if mp > m1,
m) =
Des() otherwise.

Example: cDes(51432) = {1,3,4}, cDes(21543) = {1,3,4,5}.

Introduced by Cellini '95; further studied by Dilks, Petersen and
Stembridge '09 among others.
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Properties of cDes on permutations

For D C [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.
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Defining cyclic descents
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Properties of cDes on permutations

For D C [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2["l has two properties:

(a) cDes(m) N [n— 1] = Des() v e Sy,
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Defining cyclic descents
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Properties of cDes on permutations

For D C [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2["l has two properties:
(a) cDes(m) N [n— 1] = Des() v e Sy,
(b) there exists a bijection ¢ : S, — S, such that

cDes(¢(7)) = cDes(m) + 1.
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Defining cyclic descents
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Properties of cDes on permutations

For D C [n], let D + 1 be the subset of [n] is obtained from D by
adding 1 mod n to each element.

The map cDes : S, — 2["l has two properties:

(a) cDes(m) N [n— 1] = Des() v e Sy,

(b) there exists a bijection ¢ : S, — S, such that
cDes(¢(7)) = cDes(m) + 1.

Indeed, we can just define ¢ by

¢
17D ... TTh—1Tn > TaT17T2...Tp—1
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Defining cyclic descents
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Standard Young Tableaux

A standard Young tableau (SYT) of skew shape A/p is a filling of
the diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

2[4]8]

A= (4,3,1)

‘Chu)l—\
(6]
\‘
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Defining cyclic descents
00e00

Standard Young Tableaux

A standard Young tableau (SYT) of skew shape A/p is a filling of
the diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

1/2[4]8]

A=(4,3,1) 3/5|7

6]
2/3]9]

_ 115
Mp=(6331/1) i

6
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Defining cyclic descents
00e00

Standard Young Tableaux

A standard Young tableau (SYT) of skew shape A/p is a filling of
the diagram of A/u with the numbers 1,..., n (where n = #boxes)
so that entries increase along rows and along columns.

Examples:

1/2[4]8]

A=(4,3,1) 3/5|7

6]
2/3]9]

_ 115
Mp=(6331/1) i

6

Denote the set of all SYT of shape A\/u by SYT(\/ ).
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Descents of SYT

The descent set of a standard Young tableau T is

Des(T)={i: i+ 1isin a lower row than i}.
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Defining cyclic descents
[eleTe] Yol

Descents of SYT

The descent set of a standard Young tableau T is
Des(T)={i: i+ 1isin a lower row than i}.

Examples:

2]4]8]

F €SYT((4,3,1))  Des(T) = {2,4,5}

‘O\wl—l
(6]
\‘
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Defining cyclic descents
[eleTe] Yol

Descents of SYT

The descent set of a standard Young tableau T is

Des(T)={i: i+ 1isin a lower row than i}.

Examples:
112]4]8]
T=[3]5]7] €SYT((4,3,1))  Des(T)={2,4,5}
6]
2[3]9]
T=hs eSYT((5:33,1)/(21)  Des(T) = {35}
6
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Defining cyclic descents
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?
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Defining cyclic descents
ooooe

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape A/pu, a cyclic descent extension for A/u is a pair
(cDes, ¢), where

cDes : SYT(\/u) — 2],

¢ SYT(N/p) — SYT(N\/p) is a bijection,
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Defining cyclic descents
ooooe

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape A/pu, a cyclic descent extension for A/u is a pair
(cDes, ¢), where

cDes : SYT(\/u) — 2],

¢ SYT(AN/p) — SYT(A/p) is a bijection,

satisfying the following conditions for all T € SYT(A\/p):

(a) cDes(T)N[n— 1] = Des(T),

Schur-positive grid classes and cyclic descents of SYT



Defining cyclic descents

[e]e]e]e] ]

Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape A/pu, a cyclic descent extension for A/u is a pair
(cDes, ¢), where

cDes : SYT(\/p) — 2071,

¢ SYT(AN/p) — SYT(A/p) is a bijection,

satisfying the following conditions for all T € SYT(A\/p):

(a) cDes(T)N[n— 1] = Des(T),

(b) cDes(¢(T)) =cDes(T)+ 1.
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Defining cyclic descents
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape A/u, a cyclic descent extension for \/u is a pair
(cDes, ¢), where

cDes : SYT(\/p) — 2071,

¢ SYT(N/p) — SYT(A\/p) is a bijection,

satisfying the following conditions for all T € SYT(\/pu):

(a) cDes(T) N [n—1] = Des(T),

(b) cDes(¢(T)) = cDes(T) + 1.

113]5] [1]2]4] [1][2]3] [1]3]4] [1]2]5]
2[4 3[5 4[5 2[5 34

Des(T) {13} {24} {3} {14} {2

T




Defining cyclic descents
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Cyclic descent extensions

Is there a notion of cyclic descent set on SYT?

Definition

For a given shape A/u, a cyclic descent extension for \/u is a pair
(cDes, ¢), where

cDes : SYT(\/p) — 2071,

¢ SYT(N/p) — SYT(A\/p) is a bijection,

satisfying the following conditions for all T € SYT(\/pu):

(a) cDes(T) N [n—1] = Des(T),

(b) cDes(¢(T)) = cDes(T) + 1.

113[5] [1]2]4] [1]2]3] [1]3]4] [1][2]5]
2[4 3[5 415 2[5 34

Des(T) {1,3}  {2,4} {3,5) {1,4} {2,5}
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SYT of rectangular shapes

For r| n,let A\=(r,...,r)F n be a rectangular shape.
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SYT of rectangular shapes

For r| n,let A\=(r,...,r)F n be a rectangular shape.

Theorem (Rhoades '10)

There exists a cyclic descent extension for A\ = (r,...,r).
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SYT of rectangular shapes

For r| n,let A\=(r,...,r)F n be a rectangular shape.

Theorem (Rhoades '10)

There exists a cyclic descent extension for A\ = (r,...,r).

Here, the bijection ¢ that shifts cDes is Schiitzenberger's
jeu-de-taquin promotion operator p.
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SYT of rectangular shapes

p
[ v
1[3[a] [113]4] [1[374] [1] [a 17a] [1]2]5
21516 (25| | 2] 5 (21351 (235 346
A |
p—1
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SYT of rectangular shapes

1

134 1/3|4 1/3/4 1 4 14 112]5
4
|

p determines a Z,-action. Here are the orbits for A = (3, 3):
p p

v ] v 1
173(4] »[112]5] » [1]2]3 1(3(5] » [1]2]4
T Tais56l (3416 [4[5]6 21416 [3(5]6

Des(T) {1,4}  {2,5} 3} (1,3,5)  {2,4)
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Cyclic descents of SYT
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SYT of rectangular shapes

1

134 1/3|4 1/3/4 1 4 14 112]5
4
|

p determines a Z,-action. Here are the orbits for A = (3, 3):
p p

v ] v 1
173(4] »[112]5] » [1]2]3 1(3(5] » [1]2]4
T Tais56l (3416 [4[5]6 21416 [3(5]6

Des(T) {1,4} {2,5} {3} {135,  {2,4}
To define cDes on T € SYT(r,...,r), let
n € cDes(T) iff n—1¢ Des(p~(T)).
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SYT of rectangular shapes

v
134_>134_>134_>1 4_> 14—>14212

2|5]6 215 2 5 2|13]5 213|5 3

J
5 ¢ Des pt 6 ¢ cDes

p determines a Z,-action. Here are the orbits for A = (3, 3):

p p
v ] N

173(4] »[112]5] » [1]2]3 17355 [1]2]4
21516 (346 456 2146

Des(T) {1,4}  {2,5}  {3,6) (1,3,5} {2.4,6}

T

To define cDes on T € SYT(r,...,r), let
n € cDes(T) iff n—1¢ Des(p~(T)).
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Cyclic descents on SYT(AY)

For a partition A - n— 1, let A\© be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

]

(3,3,1)” =
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Cyclic descents on SYT(AY)

For a partition A - n— 1, let A\© be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

]

(3,3,1)” =

Theorem (E.-Roichman '16)

For every A - n — 1, there exists a cyclic descent extension for A",
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Cyclic descents on SYT(AY)

For a partition A - n— 1, let A\© be the skew shape obtained from
A by placing a disconnected box at its upper right corner.

]

(3,3,1)” =

Theorem (E.-Roichman '16)

For every A - n — 1, there exists a cyclic descent extension for A",

What is the definition of cDes and ¢ in this case?

Schur-positive grid classes and cyclic descents of SYT
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Definition of cDes on SYT(A")

Example:

4] 1] 2] 3]

{1,4}  {1,2} {2,3} {3,4}

Schur-positive grid classes and cyclic descents of SYT
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Definition of cDes on SYT(A")

Example:

4] 1] 2] 3]
1[3 214 [1]3]  [1]2
2 3 4 4

{1,4}  {1,2} {2,3} {3,4}

For T € SYT(AP), let n € cDes(T) iff
@ n is strictly higher than 1, or

@ n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

Schur-positive grid classes and cyclic descents of SYT
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Definition of cDes on SYT(A")

Example:

4] 1] 2] 3]
1[3 214 [1]3]  [1]2
2 3 4 4

{1,4}  {1,2} {2,3} {3,4}

For T € SYT(AP), let n € cDes(T) iff
@ n is strictly higher than 1, or

@ n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

What is jdt(T — d)?

Schur-positive grid classes and cyclic descents of SYT
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Schur-positive grid classes and cyclic descents of SYT



Cyclic descents of SYT
0000®00000000000

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

@ Let i be the minimal entry for which the entry immediately
above or to its left is > /.
Switch i with the larger of these two entries.
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:
@ Let i be the minimal entry for which the entry immediately

above or to its left is > /.
Switch i with the larger of these two entries.

3]
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

@ Let i be the minimal entry for which the entry immediately
above or to its left is > /.
Switch i with the larger of these two entries.

3] 3]

4162 — 14

=
N

Schur-positive grid classes and cyclic descents of SYT



Cyclic descents of SYT
0000®00000000000

A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

@ Let i be the minimal entry for which the entry immediately
above or to its left is > /.
Switch i with the larger of these two entries.

3] 3] 3]

4162 — 4 =1

—
N
I
N
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

@ Let i be the minimal entry for which the entry immediately
above or to its left is > /.
Switch i with the larger of these two entries.

3] 3] 3] 3]

4]6[2] |4 1 = [1]2]4]  =jdt(T+3)

—
N
I
N
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A jeu-de-taquin straightening algorithm

Given an SYT T with n boxes, 6] 3]
let T + k be obtained by T=|1/3|5 T+3=]4/6/|2
adding k mod n to each entry. 214 5|1

Let jdt(T + k) be the SYT obtained from T + k by repeatedly
applying the following step:

@ Let i be the minimal entry for which the entry immediately
above or to its left is > /.
Switch i with the larger of these two entries.
3] 3] 3] 3]
4162 14|12 11142 11124 = jdt(T+3)
5|1 5|6 5|6 56

Note: promotion is just p(T) = jdt(T +1), p~}(T) = jdt(T — 1).
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Definition of cDes on SYT(A")

4] 1] 2] 3]
1[3 2[4 1
2 3 4]

{1,4} 7{1, 2y {2,3} {3,4}

For T € SYT(A"), define n € cDes(T) iff
@ n is strictly north of 1, or

o n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

3]

w

T —

[y
N
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Definition of cDes on SYT(A")

4] 1] 2] 3]
1[3 2[4 1
2 3 4]

{1,4} 7{1, 2y {2,3} {3,4}

For T € SYT(A"), define n € cDes(T) iff
@ n is strictly north of 1, or

o n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

3] 4]

T-3=[2[3

w

T —

[y
N
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Definition of cDes on SYT(A")

4] 1] 2] 3]
1[3 2[4 1
2 3 4]

{1,4} 7{1, 2y {2,3} {3,4}

For T € SYT(A"), define n € cDes(T) iff
@ n is strictly north of 1, or

o n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

3] 4] 4]

T—-3=[2[3] —=[1[3] =jdt(T-3)

w

T —

[y
N
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Definition of cDes on SYT(A")

4] 1] 2] 3]
1[3 2[4 1
2 3 4]

{1,4} 7{1, 2y {2,3} {3,4}

For T € SYT(A"), define n € cDes(T) iff
@ n is strictly north of 1, or

o n—d € Des(jdt(T — d)), where d is the letter in the
disconnected cell of T.

w

3] 4] 4]
T=|1/2 T—-3=|23 —11/3 = jdt(T —3)
14] 1] 12]
4 € cDes 4 —-3=1¢ Des
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The bijection ¢ that shifts cDes on SYT(A")

The map ¢ : SYT(AP) — SYT(A") given by

O(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T) + 1 for all T.

Schur-positive grid classes and cyclic descents of SYT
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The bijection ¢ that shifts cDes on SYT(A")

The map ¢ : SYT(AP) — SYT(A") given by

O(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T) + 1 for all T.

¢ determines a Z,-action on SYT(A\").
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The bijection ¢ that shifts cDes on SYT(A")

The map ¢ : SYT(AP) — SYT(A") given by
H(T)=jdt(jdt(T —d)+d+1),

where d is the letter in the disconnected cell of T,
is a bijection such that cDes(¢(T)) = cDes(T) + 1 for all T.

¢ determines a Z,-action on SYT(A\").

Example:
¢
¥ \
6, [, @, [, @, [
1/3|5 —2|4|6 —1]3|5 —{1]2]4 —1]3|5 —1]24
214 315 416 5|6 216 316

cDes {1,3,6} {1,2,4} {2,3,5} {3,4,6} {1,4,5} {2,5,6}
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How about other shapes?
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How about other shapes?

Definition
A connected skew shape \/u is a ribbon if it does not contain a
2 x 2 rectangle.
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How about other shapes?

Definition
A connected skew shape \/u is a ribbon if it does not contain a
2 x 2 rectangle.

Fact: If A/ is a connected ribbon (other than a single row or
column), then there is no cyclic descent extension for A/ p.
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How about other shapes?

Definition
A connected skew shape \/u is a ribbon if it does not contain a
2 x 2 rectangle.

Fact: If A/ is a connected ribbon (other than a single row or
column), then there is no cyclic descent extension for A/ p.

113] [1]2]
2] 3]

Des(T) {1} {2} 37
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How about other shapes?

Theorem (Adin—Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension for A/ .
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How about other shapes?

Theorem (Adin—Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension for A/ .

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov's toric Schur
polynomials.

Schur-positive grid classes and cyclic descents of SYT
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How about other shapes?

Theorem (Adin—Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension for A/ .

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov's toric Schur
polynomials.

Unfortunately, it does not provide an explicit description of cDes on
a given SYT.
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How about other shapes?

Theorem (Adin—Reiner-Roichman '17)

For every skew shape A/ that is not a connected ribbon, there is a
cyclic descent extension for A/ .

The proof uses affine symmetric functions, Gromov-Witten
invariants, and nonnegativity properties of Postnikov's toric Schur
polynomials.

Unfortunately, it does not provide an explicit description of cDes on
a given SYT.

Question: Can we find an explicit description of cDes for other
shapes \/pu?

Schur-positive grid classes and cyclic descents of SYT
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for A/ of each
of these shapes:
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for A/ of each
of these shapes:

(strip)
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for A/ of each

of these shapes:

(strip)

(hook plus a box)
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for A/ of each

of these shapes:

(strip)

[ ] (two-row straight)

(hook plus a box)
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Explicit description of cDes for some shapes

Theorem (Adin-E.-Roichman '17)

We have explicit combinatorial descriptions of cDes for A/ of each
of these shapes:

[ [ ]

(strip) (hook plus a box)

[ ] (two-row straight) u | (two-row skew)

Schur-positive grid classes and cyclic descents of SYT
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Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes. 1]

h |
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Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes. 1]

|
For T € SYT(M\/u), let n € cDes(T) iff

@ nis strictly north of 1, or
@ 1 and n are in the same vertical component.

Schur-positive grid classes and cyclic descents of SYT
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Definition of cDes on strips

Let A/ be a strip of size n, i.e., a shape whose components are
one-row or one-column shapes. 1]

|
For T € SYT(M\/u), let n € cDes(T) iff

@ nis strictly north of 1, or
@ 1 and n are in the same vertical component.

Again, the promotion operator p: T + jdt(T + 1) shifts cDes:

p
\7 1

2]3] 3[4  [1[4

1\2\p )
3 =1 1 (2
4 4 2 3

cDes {273} {374} {174} {172}
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cDes on hooks plus a box

Let A= (n—k—2,2,1%), where 0 < k < n— 4.
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cDes on hooks plus a box

Let)\:(n—k—2,2,1k), where 0 < k < n— 4.

Tol»

For T € SYT(A), let n € cDes(T) iff

e Ty, — 1lisin the first column of T.

Schur-positive grid classes and cyclic descents of SYT
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cDes on hooks plus a box

Let)\:(n—k—2,2,1k), where 0 < k < n— 4.

Tol»

For T € SYT(A), let n € cDes(T) iff

e Ty, — 1lisin the first column of T.

For this shape, this definition of cDes is unique.
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cDes on hooks plus a box

Let)\:(n—k—2,2,1k), where 0 < k < n— 4.

Tol»

For T € SYT(A), let n € cDes(T) iff
e Ty, — 1lisin the first column of T.

For this shape, this definition of cDes is unique.

We have a complicated explicit definition of a bijection ¢ that
shifts cDes. In this case it doesn't determine a Z,-action.
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cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.
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cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff

@ the last two entries in the second row of T are consecutive,
that is, T27k = T27k_1 +1;
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cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff

@ the last two entries in the second row of T are consecutive,
thatis, T x = To k-1 +1; and

® Trj_1> Ty forevery 1 <i<k.
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cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff

@ the last two entries in the second row of T are consecutive,
thatis, T x = To k-1 +1; and

® Trj_1> Ty forevery 1 <i<k.

Examples:

9€cDes<

9) because 8 =741, 4 > 2 and 6 > 3.
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cDes on two-row straight shapes

Let A = (n— k, k), where 2 < k < n/2.

For T € SYT(A), let n € cDes(T) iff

@ the last two entries in the second row of T are consecutive,
thatis, T x = To k-1 +1; and

® Trj_1> Ty forevery 1 <i<k.

Examples:

9€cDes<

9) because 8 =741, 4 > 2 and 6 > 3.

._\
w

~N || ~w

oo|ov |||

9 ¢ cDes < G
Schur-positive grid classes and cyclic descents of SYT
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cDes on two-row straight shapes

@ When A = (n — 2,2), the definition of cDes viewed as a
two-row shape coincides with the definition viewed as a hook
plus a box.

[ ] ]
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cDes on two-row straight shapes

@ When A = (n — 2,2), the definition of cDes viewed as a
two-row shape coincides with the definition viewed as a hook
plus a box.

[ ] ]

@ For A\ = (r, r), the definition of cDes viewed as a two-row
shape coincides with Rhoades’ definition viewed as a
rectangular shape.
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¢ on two-row straight shapes

For two-row straight shapes, we have an explicit definition of a map
¢ that shifts cDes, but it does not determine a Z,-action.

1]2]4[7]8] ¢ [1]2]3]5]9] ¢ [1][3]4]6]9] ¢ [1]2]5][7]9]

2(4[8/9] (3569 [46/7/8] [2/5/78] ' [3/4]6/8
¢ [1]2]3]6]8] & [1]2]3[4]7] s [1[3]4]5]8] s [1[2]4]5]6]
“las7/9] '[5/6/89] ' [2(679] ' [3[7/8]9

(cDes in red)
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cDes on two-row skew shapes

Let A\/u=(n—k+ m,k)/(m) with k # m+ 1.
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cDes on two-row skew shapes

Let A\/u=(n—k+ m,k)/(m) with k # m+ 1.

We have two different definitions of cDes on A\/u that work, but
both are complicated.
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cDes on two-row skew shapes

Let A\/u=(n—k+ m,k)/(m) with k # m+ 1.

We have two different definitions of cDes on A\/u that work, but
both are complicated.

We have no explicit description of ¢ in this case.
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Final remarks
[ Jelelele]

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.

Example: Let \/u = (4,2)/(2).

1]4] 1]2] 2]3] 34] 1]3] 24
2]3 (3]4 1[4 1/2 2]4 1]3
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Final remarks
[ Jelelele]

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.

Example: Let \/u = (4,2)/(2).

1]4] 1]2] 2]3] 34] 1]3] 24
2]3 (3]4 1[4 1/2 2]4 1]3

Our definition of cDes:

{1} {2} {3} {4} {1,3} {2,4}
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Final remarks
[ Jelelele]

Non-uniqueness of cDes

For many shapes, the definition of cDes is not unique.

Example: Let \/u = (4,2)/(2).

1]4] 1]2] 2]3] 34] 1]3] 24
2]3 (3]4 1[4 1/2 2]4 1]3

Our definition of cDes:

{1} {2} {3} {4} {1,3} {2,4}

Another possible definition of cDes:

{1} 2,4} {3} {4} {1,3} {2}
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Uniqueness of cDes for near-hooks

Theorem (Adin-E.-Roichman '17)

Suppose that either A/ or its 180°-rotation is “one cell away from
a hook’”, i.e.

1] ‘ l |

hook minus its hook plus a hook plus an
corner cell disconnected cell internal cell

Then cDes on SYT(A/p) is uniquely defined.
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Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:

Schur-positive grid classes and cyclic descents of SYT



Final remarks
00000

Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:

1[3]5]
(2 M
A4S
3
5

Pl6] } VS.
4 1[3]5]

4]

4]

=210 N}

‘mwn—n

([

(cDes in red)
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Non-uniqueness of ¢

Even for shapes where cDes in unique, different definitions of ¢
may give different orbit lengths:

1[3]5] 1[3]5] 1[3]5]
2 Hal 214 216
/6 N2[4] 6 4
Bt 6] 4]
1/p[6] 5 vs.
34 }
5 1]3]5] 1/2]6] 1]2[4]
1276 | 3T4] 376
4] 15 15

(cDes in red)
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Open problems

For each non-ribbon shape A/ pu:

@ Find an explicit combinatorial description of cDes on
SYT(A\/p).
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Open problems

For each non-ribbon shape A/ pu:

@ Find an explicit combinatorial description of cDes on
SYT(A\/p).

@ Describe an explicit bijection ¢ that shifts cDes cyclically and,
ideally, generates a Z,-action.
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Open problems

For each non-ribbon shape A/ pu:

@ Find an explicit combinatorial description of cDes on
SYT(A\/p).

@ Describe an explicit bijection ¢ that shifts cDes cyclically and,
ideally, generates a Z,-action.

e Find an explicit involution on SYT(A/u) that sends cDes to its
negative (modulo n).
(Adin—Reiner—Roichman prove that such an involution exists.)

Schur-positive grid classes and cyclic descents of SYT



Final remarks
00000

Open problems

For each non-ribbon shape A/ pu:

@ Find an explicit combinatorial description of cDes on
SYT(A\/p).

@ Describe an explicit bijection ¢ that shifts cDes cyclically and,
ideally, generates a Z,-action.

e Find an explicit involution on SYT(A/u) that sends cDes to its
negative (modulo n).
(Adin—Reiner—Roichman prove that such an involution exists.)

Thanks!
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