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Inversion sequences

An inversion sequence of length n is an integer sequence
e = e1e2 · · · en such that 0 ≤ ei < i .

In = set of inversion sequences of length n.

Example. e = 00213 ∈ I5.

Permutations can be encoded as inversion sequences via the
bijection Θ : Sn → In, defined by Θ(π) = e1e2 · · · en where

ei = |{j : j < i and πj > πi}|.
For instance, Θ(35142) = 00213.
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Classical patterns in inversion sequences

I The reduction of a sequence is
obtained by replacing its
smallest entry with 0, its
second smallest with 1, etc.

I e contains the (classical)
pattern p = p1p2 · · · pl if there
is a subsequence ei1ei2 · · · eil
whose reduction is p.
Otherwise, e avoids p.

Example. e = 00213 contains
012 and 001, but it avoids 201
and 110.

Let In(p) = {e ∈ In : e avoids p}.
For example, I3(001) = {000, 010, 011, 012}.

The avoidance sequences |In(p)| have been studied by
Corteel–Martinez–Savage–Weselcouch and by Mansour–Shattuck.
Go to Megan’s talk tomorrow to hear more about this!
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Consecutive patterns in inversion sequences

e ∈ In contains the (consecutive) pattern p = p1p2 · · · pl if there is
a consecutive subsequence eiei+1 · · · ei+l−1 whose reduction is p.
Otherwise, e avoids p.

Example. e = 0023013 contains 012 and 120, but it avoids 000
and 010.

In(p) = {e ∈ In : e avoids p}.
Goal 1: determine |In(p)| for consecutive patterns p = p1p2 · · · pl .
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Avoiding consecutive patterns of length 3

Let In,k(p) = {e ∈ In(p) : en = k}, so that In(p) =
⋃n−1

k=0 In,k(p).

Pattern p |In(p)| in the OEIS Recurrence for |In,k(p)|

012 A049774∗,
equals |Sn(321)|

|In,k(p)| = |In−1(p)| −
∑k−1

l=1
∑l−1

j=0
∑

i≥j |In−3,i (p)|

021 A071075∗,
equals |Sn(1324)|

|In,k(p)| = |In−1(p)| − (n − 2− k)
∑k−1

j=0 |In−2,j(p)|

102 New |In,k(p)| = |In−1(p)| −
∑

j≥1 j |In−2,j(p)|

120 A200404,
equals |Sn(1432)|

|In,k(p)| = |In−1(p)| −
∑

j>k(n − 2− j) |In−2,j(p)|

201 New |In,k(p)| = |In−1(p)| − k
∑

j>k |In−2,j(p)|
210 New |In,k(p)| = |In−1(p)| −

∑n−4
l=k+1

∑n−3
j=l+1

∑
i≤j |In−3,i (p)|

000 A052169∗ |In(p)| = (n+1)!−dn+1
n , where dn = # derangements

001 New |In,k(p)| = |In−1(p)| −
∑

j<k |In−2,j(p)|
010 New |In,k(p)| = |In−1(p)| − (n − 2− k) |In−2,k(p)|
011 New |In,k(p)| = |In−1(p)| −

∑
j<k |In−2,j(p)| (if k 6= n − 1)

100, 110 New |In,k(p)| = |In−1(p)| −
∑

j>k |In−2,j(p)|
101 New |In,k(p)| = |In−1(p)| − k |In−2,k(p)|

* Formulas were known for these sequences.
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Recurrences

For p = 110:

|In,k(110)| = |In−1(110)| −
∑
j>k

|In−2,j(110)|.

For p = 000:

|In(000)| = (n − 1) |In−1(000)|+ (n − 2) |In−2(000)|.

⇒ |In(p)| = (n+1)!−dn+1
n , where dn = #derrangements in Sn.

Open: find a direct bijective proof.

More generally, for p = 0r :

|In(0r )| =
r−1∑
j=1

(n − j) |In−j(0r )|.

Sergi Elizalde Consecutive Patterns in Inversion Sequences



Recurrences

For p = 110:

|In,k(110)| = |In−1(110)| −
∑
j>k

|In−2,j(110)|.

For p = 000:

|In(000)| = (n − 1) |In−1(000)|+ (n − 2) |In−2(000)|.

⇒ |In(p)| = (n+1)!−dn+1
n , where dn = #derrangements in Sn.

Open: find a direct bijective proof.

More generally, for p = 0r :

|In(0r )| =
r−1∑
j=1

(n − j) |In−j(0r )|.

Sergi Elizalde Consecutive Patterns in Inversion Sequences



Recurrences

For p = 110:

|In,k(110)| = |In−1(110)| −
∑
j>k

|In−2,j(110)|.

For p = 000:

|In(000)| = (n − 1) |In−1(000)|+ (n − 2) |In−2(000)|.

⇒ |In(p)| = (n+1)!−dn+1
n , where dn = #derrangements in Sn.

Open: find a direct bijective proof.

More generally, for p = 0r :

|In(0r )| =
r−1∑
j=1

(n − j) |In−j(0r )|.

Sergi Elizalde Consecutive Patterns in Inversion Sequences



Recurrences

For p = 110:

|In,k(110)| = |In−1(110)| −
∑
j>k

|In−2,j(110)|.

For p = 000:

|In(000)| = (n − 1) |In−1(000)|+ (n − 2) |In−2(000)|.

⇒ |In(p)| = (n+1)!−dn+1
n , where dn = #derrangements in Sn.

Open: find a direct bijective proof.

More generally, for p = 0r :

|In(0r )| =
r−1∑
j=1

(n − j) |In−j(0r )|.

Sergi Elizalde Consecutive Patterns in Inversion Sequences



Recurrences

For p = 110:

|In,k(110)| = |In−1(110)| −
∑
j>k

|In−2,j(110)|.

For p = 000:

|In(000)| = (n − 1) |In−1(000)|+ (n − 2) |In−2(000)|.

⇒ |In(p)| = (n+1)!−dn+1
n , where dn = #derrangements in Sn.

Open: find a direct bijective proof.

More generally, for p = 0r :

|In(0r )| =
r−1∑
j=1

(n − j) |In−j(0r )|.

Sergi Elizalde Consecutive Patterns in Inversion Sequences



Equivalences between patterns

For e ∈ In and a consecutive pattern p, let

Oc(p, e) = {i : eiei+1ei+2 is an occurence of p}.

Example. Oc(012, 0023013) = {2, 5}.

Definition. Two consecutive patterns p and p′ are:
I Wilf equivalent, denoted p ∼ p′, if

|In(p)| =
∣∣In(p′)

∣∣ ∀n.

I strongly Wilf equivalent, denoted p
s∼ p′, if

|{e ∈ In : |Oc(p, e)| = m}| =
∣∣{e ∈ In : |Oc(p′, e)| = m

}∣∣ ∀n,m.

I super-strongly Wilf equivalent, denoted p
ss∼ p′, if

|{e ∈ In : Oc(p, e) = S}| =
∣∣{e ∈ In : Oc(p′, e) = S

}∣∣ ∀n,S ⊆ [n].

Note that p ss∼ p′ ⇒ p
s∼ p′ ⇒ p ∼ p′.

Goal 2: classify consecutive patterns into these equivalence classes.
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Equivalences between patterns of length 3

|In(100)| and |In(110)| satisfy the same recurrence, so 100 ∼ 110.

Theorem. 100 ss∼ 110.

Proof sketch.
1. For any S ⊆ [n], construct a bijection

{e ∈ In : Oc(100, e) ⊇ S} −→ {e ∈ In : Oc(110, e) ⊇ S}

that replaces occurrences of 100 in positions S with
occurrences of 110.

2. Using inclusion-exclusion, we get

|{e ∈ In : Oc(100, e) = S}| = |{e ∈ In : Oc(110, e) = S}| .

This is the only equivalence between consecutive patterns of
length 3.
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Patterns of length 4

Theorem. A complete list of equivalences between consecutive
patterns of length 4 is as follows:

I 0102 ss∼ 0112
I 0021 ss∼ 0121
I 1002 ss∼ 1012 ss∼ 1102
I 0100 ss∼ 0110
I 2013 ss∼ 2103
I 1200 ss∼ 1210 ss∼ 1220
I 0211 ss∼ 0221

I 1000 ss∼ 1110
I 1001 ss∼ 1011 ss∼ 1101
I 2100 ss∼ 2210
I 2001 ss∼ 2011 ss∼ 2101 ss∼ 2201
I 2012 ss∼ 2102
I 2010 ss∼ 2110 ss∼ 2120
I 3012 ss∼ 3102

Conjecture. If p and p′ are consecutive patterns of length m in
inversion sequences, then

p ∼ p′ ⇐⇒ p
s∼ p′

??⇐⇒ p
ss∼ p′

Analogous to Nakamura’s conjecture for consecutive patterns in
permutations.
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Patterns of length 4

Theorem. A complete list of equivalences between consecutive
patterns of length 4 is as follows:

I 0102 ss∼ 0112
I 0021 ss∼ 0121
I 1002 ss∼ 1012 ss∼ 1102
I 0100 ss∼ 0110
I 2013 ss∼ 2103
I 1200 ss∼ 1210 ss∼ 1220
I 0211 ss∼ 0221

I 1000 ss∼ 1110
I 1001 ss∼ 1011 ss∼ 1101
I 2100 ss∼ 2210
I 2001 ss∼ 2011 ss∼ 2101 ss∼ 2201
I 2012 ss∼ 2102
I 2010 ss∼ 2110 ss∼ 2120
I 3012 ss∼ 3102

Conjecture. If p and p′ are consecutive patterns of length m in
inversion sequences, then

p ∼ p′ ⇐⇒ p
s∼ p′

??⇐⇒ p
ss∼ p′

Analogous to Nakamura’s conjecture for consecutive patterns in
permutations.
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Proof ideas

Equivalences are proved differently, but there are three main cases:

I p and p′ are non-overlapping, mutually non-overlapping and
“interchangeable”. Example: 1002 ss∼ 1012.

Proof is bijective, and distribution of occurrences is symmetric:∣∣{e ∈ In : Oc(p, e) = S , Oc(p′, e) = T
}∣∣

=
∣∣{e ∈ In : Oc(p, e) = T , Oc(p′, e) = S

}∣∣
I p and p′ are non-overlapping and “interchangeable”.
Example: 1000 ss∼ 1110. Proof uses inclusion-exclusion.

I p and p′ are overlapping. Example: 0102 ss∼ 0112.
Proof uses a block decomposition of inversion sequences.

The 75 consecutive patterns of length 4 fall into 55 equivalence
classes.
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Longer patterns

Some equivalences generalize to longer patterns:

Theorem. For every r ≥ 1 and s ≥ 2,

0r 1 0r 2 0r . . . (s − 1) 0r s ss∼ 0r 1 1r 2 2r . . . (s − 1) (s − 1)r s

s 0r (s − 1) 0r . . . 0r 10r ss∼ s (s − 1)r s (s − 2)r s . . . s 1r s 0r

ss∼ s (s − 1)r (s − 1) (s − 2)r (s − 2) . . . 1r1 0r
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Patterns of relations

Let R1,R2 ∈ {≤,≥, <,>,=, 6=}.

e ∈ In contains the (consecutive) pattern of relations (R1,R2) if
there is an i such that eiR1ei+1 and ei+1R2ei+2.
Otherwise, e avoids (R1,R2).

For example, e contains (<,=) if ei < ei+1 = ei+2 for some i .

Let In(R1,R2) = {e ∈ In : e avoids (R1,R2)}.

Example. but 0023224337 ∈ I10(≥, >).

We define the relations ∼, s∼ and ss∼ for patterns of relations like we
did for patterns.

Goal 3: Classify patterns of relations into equivalence classes and
determine |In(R1,R2)|.
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Equivalences between patterns of relations

Theorem. A complete list of equivalences between consecutive
patterns of relations (R1,R2) is as follows:

I (≥, <)
ss∼ (<,≥) ∼ (6=,≥)

I (≥,≥)
ss∼ (<,<)

I (≥,=)
ss∼ (=,≥)

I (≥, >)
ss∼ (>,≥)

I (>,=)
ss∼ (=, >)

Note: Wilf equivalence and strong Wilf equivalence classes do not
coincide for patterns of relations.

Corollary (conjectured by Baxter–Pudwell, proved non-bijectively
by Baxter–Shattuck and Kasraoui). The vincular permutation
patterns 1243 and 4213 are Wilf equivalent.

New bijective proof:
Sn(1243)↔ In(>,≥)↔ In(≥, >)↔ Sn(4213).
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Avoiding patterns of relations
Patterns of relations for which the sequence |In(R1,R2)| appears in
the OEIS as enumerating other objects:

Pattern (R1,R2) OEIS Description

(≤, 6=) A040000 2 (for n > 1)

(≤,≥) A000027 n

(≥, 6=) A000124
(n
2

)
+ 1

(≥,≤) A000045 Fn+1 (Fibonacci)

(6=,≤) A000071 Fn+2 − 1 (Fibonacci)

(≥, <)
ss∼ (<,≥) ∼ ( 6=,≥) A000079 2n−1

(6=, 6=) A000085 Number of involutions of [n]

(≤, >) A000108 Cn (Catalan)

(>,≤) A071356 Underdiagonal paths of from the origin
to x = n with steps (0, 1), (1, 0), (1, 2)

(=, 6=) A003422 0! + 1! + 2! + · · ·+ (n − 1)!

(≥,≥) ss∼ (<,<) A049774 |Sn(321)|
(6=,=) A000522

∑n−1
i=0 (n − 1)!/i!

(≥, >)
ss∼ (>,≥) A200403 |Sn(1243)|

(=,=) A052169 (n+1)!−dn+1
n
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Examples

Let e ∈ In.

e ∈ In(≥,≤) iff there exists j such that

e1 < e2 < · · · < ej ≥ ej+1 > ej+2 > · · · > en.

=⇒ |In(≥,≤)| = Fn+1.

e ∈ In(≤, >) iff e1 ≤ e2 ≤ · · · ≤ en.

=⇒ |In(≥,≤)| = Cn.
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The pattern In(>,≤)

e ∈ In(>,≤) iff there exists j such that

e1 ≤ e2 ≤ · · · ≤ ej > ej+1 > · · · > en.

Theorem (conjectured by Martinez–Savage, proved independently
by Cao–Jin–Lin and Hossain).∑

n≥0

∣∣In(>,≤)
∣∣ xn =

1− 2x −
√
1− 4x − 4x2

4x2 .

Using the interpretation as marked lattice paths, we also obtain:
I the distribution of the statistic #{distinct entries in e} is

symmetric on In(>,≤) (conjectured by Martinez–Savage),

I enumeration formulas for inversion sequences satisfying other
unimodality conditions.
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