Consecutive Patterns in Inversion Sequences

Sergi Elizalde

Dartmouth College

Joint work with Juan Auli

AMS Fall Southeastern Sectional Meeting Gainesville, FL, November 2019 Special Session on Patterns in Permutations An inversion sequence of length *n* is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$.

 I_n = set of inversion sequences of length n.

Inversion sequences

An inversion sequence of length *n* is an integer sequence $e = e_1 e_2 \cdots e_n$ such that $0 \le e_i < i$.

 I_n = set of inversion sequences of length n.

Example. $e = 00213 \in I_5$.

Permutations can be encoded as inversion sequences via the bijection $\Theta: S_n \to \mathbf{I}_n$, defined by $\Theta(\pi) = e_1 e_2 \cdots e_n$ where $e_i = |\{j: j < i \text{ and } \pi_j > \pi_i\}|.$

For instance, $\Theta(35142) = 00213$.

The reduction of a sequence is obtained by replacing its smallest entry with 0, its second smallest with 1, etc.

- The reduction of a sequence is obtained by replacing its smallest entry with 0, its second smallest with 1, etc.
- e contains the (classical) pattern p = p₁p₂ ··· p_l if there is a subsequence e_{i1}e_{i2} ··· e_{i1} whose reduction is p.
 Otherwise, e avoids p.

- The reduction of a sequence is obtained by replacing its smallest entry with 0, its second smallest with 1, etc.
- e contains the (classical) pattern p = p₁p₂···p_l if there is a subsequence e_{i1}e_{i2}···e_{i1} whose reduction is p. Otherwise, e avoids p.

Example. e = 00213 contains 012 and 001, but it avoids 201 and 110.

- The reduction of a sequence is obtained by replacing its smallest entry with 0, its second smallest with 1, etc.
- e contains the (classical) pattern p = p₁p₂ ··· p_l if there is a subsequence e_{i1}e_{i2} ··· e_{il} whose reduction is p.
 Otherwise, e avoids p.

Example. e = 00213 contains 012 and 001, but it avoids 201 and 110.

Let $I_n(p) = \{e \in I_n : e \text{ avoids } p\}$. For example, $I_3(001) = \{000, 010, 011, 012\}$.

The avoidance sequences $|I_n(p)|$ have been studied by Corteel–Martinez–Savage–Weselcouch and by Mansour–Shattuck. Go to Megan's talk tomorrow to hear more about this!

Consecutive patterns in inversion sequences

 $e \in I_n$ contains the (consecutive) pattern $p = \underline{p_1 p_2 \cdots p_l}$ if there is a consecutive subsequence $e_i e_{i+1} \cdots e_{i+l-1}$ whose reduction is p. Otherwise, e avoids p.

Example. e = 0023013 contains <u>012</u> and <u>120</u>, but it avoids <u>000</u> and <u>010</u>.

Consecutive patterns in inversion sequences

 $e \in I_n$ contains the (consecutive) pattern $p = \underline{p_1 p_2 \cdots p_l}$ if there is a consecutive subsequence $e_i e_{i+1} \cdots e_{i+l-1}$ whose reduction is p. Otherwise, e avoids p.

Example. e = 0023013 contains <u>012</u> and <u>120</u>, but it avoids <u>000</u> and <u>010</u>.

 $I_n(p) = \{e \in I_n : e \text{ avoids } p\}.$ Goal 1: determine $|I_n(p)|$ for consecutive patterns $p = \underline{p_1 p_2 \cdots p_l}.$

Avoiding consecutive patterns of length 3

Let $I_{n,k}(p) = \{e \in I_n(p) : e_n = k\}$, so that $I_n(p) = \bigcup_{k=0}^{n-1} I_{n,k}(p)$.

Avoiding consecutive patterns of length 3

Let $I_{n,k}(p) = \{e \in I_n(p) : e_n = k\}$, so that $I_n(p) = \bigcup_{k=0}^{n-1} I_{n,k}(p)$.

Pattern <i>p</i>	$ \mathbf{I}_n(p) $ in the OEIS	Recurrence for $ I_{n,k}(p) $
012	A049774*, equals <i>S_n(<u>321</u>)</i>	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{l=1}^{k-1} \sum_{j=0}^{l-1} \sum_{i\geq j} \mathbf{I}_{n-3,i}(p) $
<u>021</u>	A071075*, equals <i>S_n(<u>132</u>4)</i>	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - (n-2-k)\sum_{j=0}^{k-1} \mathbf{I}_{n-2,j}(p) $
<u>102</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{j \ge 1} j \mathbf{I}_{n-2,j}(p) $
<u>120</u>	A200404, equals $ S_n(1432) $	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{j>k} (n-2-j) \mathbf{I}_{n-2,j}(p) $
<u>201</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - k \sum_{j > k} \mathbf{I}_{n-2,j}(p) $
<u>210</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{l=k+1}^{n-4} \sum_{j=l+1}^{n-3} \sum_{i \leq j} \mathbf{I}_{n-3,i}(p) $

* Formulas were known for these sequences.

Avoiding consecutive patterns of length 3

Let $I_{n,k}(p) = \{e \in I_n(p) : e_n = k\}$, so that $I_n(p) = \bigcup_{k=0}^{n-1} I_{n,k}(p)$.

Pattern <i>p</i>	$ \mathbf{I}_n(p) $ in the OEIS	Recurrence for $ I_{n,k}(p) $
<u>012</u>	A049774*, equals <i>S_n(<u>321</u>)</i>	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{l=1}^{k-1} \sum_{j=0}^{l-1} \sum_{i \ge j} \mathbf{I}_{n-3,i}(p) $
<u>021</u>	A071075*, equals <i>S_n</i> (<u>132</u> 4)	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - (n-2-k)\sum_{j=0}^{k-1} \mathbf{I}_{n-2,j}(p) $
<u>102</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{j \ge 1} j \mathbf{I}_{n-2,j}(p) $
<u>120</u>	A200404, equals $ S_n(1432) $	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{j>k} (n-2-j) \mathbf{I}_{n-2,j}(p) $
<u>201</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - k \sum_{j > k} \mathbf{I}_{n-2,j}(p) $
<u>210</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - \sum_{l=k+1}^{n-4} \sum_{j=l+1}^{n-3} \sum_{i \leq j} \mathbf{I}_{n-3,i}(p) $
000	A052169*	$ {f I}_n(p) =rac{(n+1)!-d_{n+1}}{n}$, where $d_n=\#$ derangements
<u>001</u>	New	$ I_{n,k}(p) = I_{n-1}(p) - \sum_{j < k} I_{n-2,j}(p) $
<u>010</u>	New	$ \mathbf{I}_{n,k}(p) = \mathbf{I}_{n-1}(p) - (n-2-k) \mathbf{I}_{n-2,k}(p) $
<u>011</u>	New	$ I_{n,k}(p) = I_{n-1}(p) - \sum_{j < k} I_{n-2,j}(p) $ (if $k \neq n-1$)
<u>100, 110</u>	New	$ I_{n,k}(p) = I_{n-1}(p) - \sum_{j > k} I_{n-2,j}(p) $
<u>101</u>	New	$ I_{n,k}(p) = I_{n-1}(p) - k I_{n-2,k}(p) $

* Formulas were known for these sequences.

For
$$p = \underline{000}$$
:
 $|\mathbf{I}_n(\underline{000})| = (n-1) |\mathbf{I}_{n-1}(\underline{000})| + (n-2) |\mathbf{I}_{n-2}(\underline{000})|.$

 $|\mathbf{I}_{n}(\underline{000})| = (n-1) |\mathbf{I}_{n-1}(\underline{000})| + (n-2) |\mathbf{I}_{n-2}(\underline{000})|.$ $\Rightarrow |\mathbf{I}_{n}(p)| = \frac{(n+1)! - d_{n+1}}{n}, \text{ where } d_{n} = \# \text{derrangements in } S_{n}.$

 $\begin{aligned} |\mathbf{I}_{n}(\underline{000})| &= (n-1) |\mathbf{I}_{n-1}(\underline{000})| + (n-2) |\mathbf{I}_{n-2}(\underline{000})|. \\ \Rightarrow \quad |\mathbf{I}_{n}(p)| &= \frac{(n+1)! - d_{n+1}}{n}, \text{ where } d_{n} = \# \text{derrangements in } S_{n}. \end{aligned}$

Open: find a direct bijective proof.

$$\begin{aligned} |\mathbf{I}_{n}(\underline{000})| &= (n-1) |\mathbf{I}_{n-1}(\underline{000})| + (n-2) |\mathbf{I}_{n-2}(\underline{000})|. \\ \Rightarrow \quad |\mathbf{I}_{n}(p)| &= \frac{(n+1)! - d_{n+1}}{n}, \text{ where } d_{n} = \# \text{derrangements in } S_{n}. \end{aligned}$$

Open: find a direct bijective proof.
More generally, for
$$p = \underline{0}^r$$
:
 $|\mathbf{I}_n(\underline{0}^r)| = \sum_{j=1}^{r-1} (n-j) |\mathbf{I}_{n-j}(\underline{0}^r)|.$

For $e \in I_n$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurrence of } p\}.$ Example. $Oc(\underline{012}, 0023013) = \{2, 5\}.$

For $e \in I_n$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurence of } p\}.$ Example. $Oc(\underline{012}, 0023013) = \{2, 5\}.$ Definition. Two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if

 $|\mathbf{I}_n(p)| = |\mathbf{I}_n(p')| \quad \forall n.$

For $e \in I_p$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurrence of } p\}.$ **Example.** $Oc(012, 0023013) = \{2, 5\}.$ **Definition.** Two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if

 $|\mathbf{I}_n(p)| = |\mathbf{I}_n(p')| \quad \forall n.$

• strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$. if $|\{e \in I_n : |Oc(p, e)| = m\}| = |\{e \in I_n : |Oc(p', e)| = m\}|$ $\forall n, m.$

For $e \in I_n$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurrence of } p\}.$ Example. $Oc(\underline{012}, 0023013) = \{2, 5\}.$

Definition. Two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if

 $|\mathbf{I}_n(p)| = |\mathbf{I}_n(p')| \quad \forall n.$

• strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$, if

 $|\{e \in I_n : |Oc(p, e)| = m\}| = |\{e \in I_n : |Oc(p', e)| = m\}| \quad \forall n, m.$

▶ super-strongly Wilf equivalent, denoted $p \stackrel{ss}{\sim} p'$, if $|\{e \in I_n : Oc(p, e) = S\}| = |\{e \in I_n : Oc(p', e) = S\}| \quad \forall n, S \subseteq [n].$

For $e \in I_n$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurence of } p\}.$ Example. $Oc(\underline{012}, 0023013) = \{2, 5\}.$

Definition. Two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if

 $|\mathbf{I}_n(p)| = |\mathbf{I}_n(p')| \quad \forall n.$

• strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$, if

 $|\{e \in \mathsf{I}_n : |\mathsf{Oc}(p, e)| = m\}| = |\{e \in \mathsf{I}_n : |\mathsf{Oc}(p', e)| = m\}| \quad \forall n, m.$

• super-strongly Wilf equivalent, denoted $p \stackrel{ss}{\sim} p'$, if

 $|\{e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S\}| = |\{e \in \mathsf{I}_n : \mathsf{Oc}(p', e) = S\}| \quad \forall n, S \subseteq [n].$

Note that $p \stackrel{ss}{\sim} p' \Rightarrow p \stackrel{s}{\sim} p' \Rightarrow p \sim p'$.

For $e \in I_n$ and a consecutive pattern p, let $Oc(p, e) = \{i : e_i e_{i+1} e_{i+2} \text{ is an occurence of } p\}.$ Example. $Oc(\underline{012}, 0023013) = \{2, 5\}.$

Definition. Two consecutive patterns p and p' are:

• Wilf equivalent, denoted $p \sim p'$, if

 $|\mathbf{I}_n(p)| = |\mathbf{I}_n(p')| \quad \forall n.$

• strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p'$, if

 $|\{e \in \mathsf{I}_n : |\mathsf{Oc}(p, e)| = m\}| = |\{e \in \mathsf{I}_n : |\mathsf{Oc}(p', e)| = m\}| \quad \forall n, m.$

• super-strongly Wilf equivalent, denoted $p \stackrel{ss}{\sim} p'$, if

 $|\{e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S\}| = |\{e \in \mathsf{I}_n : \mathsf{Oc}(p', e) = S\}| \quad \forall n, S \subseteq [n].$

Note that $p \stackrel{ss}{\sim} p' \Rightarrow p \stackrel{s}{\sim} p' \Rightarrow p \sim p'$.

Goal 2: classify consecutive patterns into these equivalence classes.

 $|I_n(\underline{100})|$ and $|I_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

 $|I_n(\underline{100})|$ and $|I_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Theorem. $\underline{100} \stackrel{ss}{\sim} \underline{110}$.

 $|I_n(\underline{100})|$ and $|I_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Theorem. $\underline{100} \stackrel{ss}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq [n]$, construct a bijection

 $\{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{100}, e) \supseteq S\} \longrightarrow \{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{110}, e) \supseteq S\}$

that replaces occurrences of $\underline{100}$ in positions *S* with occurrences of $\underline{110}$.

 $|I_n(\underline{100})|$ and $|I_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Theorem. $\underline{100} \stackrel{ss}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq [n]$, construct a bijection

 $\{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{100}, e) \supseteq S\} \longrightarrow \{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{110}, e) \supseteq S\}$

that replaces occurrences of $\underline{100}$ in positions S with occurrences of $\underline{110}$.

2. Using inclusion-exclusion, we get

 $|\{e \in I_n : Oc(\underline{100}, e) = S\}| = |\{e \in I_n : Oc(\underline{110}, e) = S\}|.$

 $|I_n(\underline{100})|$ and $|I_n(\underline{110})|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Theorem. $\underline{100} \stackrel{ss}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq [n]$, construct a bijection

 $\{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{100}, e) \supseteq S\} \longrightarrow \{e \in \mathsf{I}_n : \mathsf{Oc}(\underline{110}, e) \supseteq S\}$

that replaces occurrences of $\underline{100}$ in positions S with occurrences of $\underline{110}$.

2. Using inclusion-exclusion, we get

 $|\{e \in I_n : Oc(\underline{100}, e) = S\}| = |\{e \in I_n : Oc(\underline{110}, e) = S\}|.$

This is the only equivalence between consecutive patterns of length 3.

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- $\blacktriangleright \ \underline{0102} \stackrel{ss}{\sim} \underline{0112}$
- ► <u>0021</u> ^{SS} <u>0121</u>
- $\blacktriangleright \ \underline{1002} \stackrel{ss}{\sim} \underline{1012} \stackrel{ss}{\sim} \underline{1102}$
- $\blacktriangleright \ \underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- ► <u>2013</u> ^{ss} <u>2103</u>
- $\blacktriangleright \ \underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- ▶ <u>0211</u> ^{ss} <u>0221</u>

- $\blacktriangleright \ \underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\blacktriangleright \ \underline{1001} \stackrel{ss}{\sim} \underline{1011} \stackrel{ss}{\sim} \underline{1101}$
- ► <u>2100</u> ^{ss} <u>2210</u>
- $2001 \stackrel{ss}{\sim} 2011 \stackrel{ss}{\sim} 2101 \stackrel{ss}{\sim} 2201$
- ► <u>2012</u> ^{ss} <u>2102</u>
- $2010 \stackrel{ss}{\sim} 2110 \stackrel{ss}{\sim} 2120$
- ► <u>3012</u> ⁵⁵ <u>3102</u>

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- ▶ <u>0102</u> ^{ss} <u>0112</u>
- ▶ <u>0021</u> ^{ss} <u>0121</u>
- $\blacktriangleright \ \underline{1002} \stackrel{ss}{\sim} \underline{1012} \stackrel{ss}{\sim} \underline{1102}$
- $\blacktriangleright \ \underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- ► <u>2013</u> ^{ss} <u>2103</u>
- $\blacktriangleright \ \underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- ► <u>0211</u> ^{ss} <u>0221</u>

- $\blacktriangleright \ \underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\blacktriangleright \ \underline{1001} \stackrel{\text{ss}}{\sim} \underline{1011} \stackrel{\text{ss}}{\sim} \underline{1101}$
- ► <u>2100</u> ^{ss} <u>2210</u>
- $2001 \stackrel{ss}{\sim} 2011 \stackrel{ss}{\sim} 2101 \stackrel{ss}{\sim} 2201$
- ► <u>2012</u> ^{ss} <u>2102</u>
- $\blacktriangleright \ \underline{2010} \stackrel{ss}{\sim} \underline{2110} \stackrel{ss}{\sim} \underline{2120}$
- ► <u>3012</u> ⁵⁵ <u>3102</u>

Conjecture. If p and p' are consecutive patterns of length m in inversion sequences, then

 $p \sim p' \iff p \stackrel{s}{\sim} p'$

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- ▶ $0102 \stackrel{ss}{\sim} 0112$
- ▶ <u>0021</u> ^{ss} <u>0121</u>
- $\blacktriangleright \ \underline{1002} \stackrel{ss}{\sim} \underline{1012} \stackrel{ss}{\sim} \underline{1102}$
- $\blacktriangleright \ \underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- ► <u>2013</u> ^{ss} <u>2103</u>
- $\blacktriangleright \ \underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- ► <u>0211</u> ^{ss} <u>0221</u>

- $\blacktriangleright \ \underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\blacktriangleright \ \underline{1001} \stackrel{\text{ss}}{\sim} \underline{1011} \stackrel{\text{ss}}{\sim} \underline{1101}$
- ► <u>2100</u> ^{*ss*} <u>2210</u>
- $2001 \stackrel{ss}{\sim} 2011 \stackrel{ss}{\sim} 2101 \stackrel{ss}{\sim} 2201$
- ► <u>2012</u> ^{ss} <u>2102</u>
- $\blacktriangleright \ \underline{2010} \stackrel{\text{ss}}{\sim} \underline{2110} \stackrel{\text{ss}}{\sim} \underline{2120}$
- ► <u>3012</u> ⁵⁵ <u>3102</u>

Conjecture. If p and p' are consecutive patterns of length m in inversion sequences, then

$$p \sim p' \iff p \stackrel{s}{\sim} p'$$

Analogous to Nakamura's conjecture for consecutive patterns in permutations.

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- ▶ $0102 \stackrel{ss}{\sim} 0112$
- ▶ <u>0021</u> ^{ss} <u>0121</u>
- $\blacktriangleright \ \underline{1002} \stackrel{ss}{\sim} \underline{1012} \stackrel{ss}{\sim} \underline{1102}$
- $\blacktriangleright \ \underline{0100} \stackrel{ss}{\sim} \underline{0110}$
- ► <u>2013</u> ⁵⁵ <u>2103</u>
- $\blacktriangleright \ \underline{1200} \stackrel{ss}{\sim} \underline{1210} \stackrel{ss}{\sim} \underline{1220}$
- ► <u>0211</u> ^{ss} <u>0221</u>

- $\blacktriangleright \ \underline{1000} \stackrel{ss}{\sim} \underline{1110}$
- $\blacktriangleright \ \underline{1001} \stackrel{\text{ss}}{\sim} \underline{1011} \stackrel{\text{ss}}{\sim} \underline{1101}$
- ► <u>2100</u> ^{*ss*} <u>2210</u>
- $2001 \stackrel{ss}{\sim} 2011 \stackrel{ss}{\sim} 2101 \stackrel{ss}{\sim} 2201$
- ► <u>2012</u> ^{ss} <u>2102</u>
- $\blacktriangleright \ \underline{2010} \stackrel{ss}{\sim} \underline{2110} \stackrel{ss}{\sim} \underline{2120}$
- ► <u>3012</u> ⁵⁵ <u>3102</u>

Conjecture. If p and p' are consecutive patterns of length m in inversion sequences, then

$$p \sim p' \iff p \stackrel{s}{\sim} p' \stackrel{??}{\iff} p \stackrel{ss}{\sim} p'$$

Analogous to Nakamura's conjecture for consecutive patterns in permutations.

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ^{ss} 1012.

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ⁵⁵/_~ 1012.

Proof is bijective, and distribution of occurrences is symmetric:

$$\begin{aligned} \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S, \, \mathsf{Oc}(p', e) = T \right\} \right| \\ &= \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = T, \, \mathsf{Oc}(p', e) = S \right\} \right| \end{aligned}$$

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ^{ss} 1012.

Proof is bijective, and distribution of occurrences is symmetric:

$$\begin{aligned} \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S, \, \mathsf{Oc}(p', e) = T \right\} \right| \\ &= \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = T, \, \mathsf{Oc}(p', e) = S \right\} \right| \end{aligned}$$

p and *p'* are non-overlapping and "interchangeable".
 Example: 1000 ^{ss} 1110.

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ⁵⁵/_~ 1012.

Proof is bijective, and distribution of occurrences is symmetric:

$$\begin{aligned} \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S, \, \mathsf{Oc}(p', e) = T \right\} \right| \\ &= \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = T, \, \mathsf{Oc}(p', e) = S \right\} \right| \end{aligned}$$

p and *p'* are non-overlapping and "interchangeable".
 Example: 1000 ⁵⁵/₂ 1110. Proof uses inclusion-exclusion.

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ⁵⁵ 1012.

Proof is bijective, and distribution of occurrences is symmetric:

 $\begin{aligned} \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S, \, \mathsf{Oc}(p', e) = T \right\} \right| \\ &= \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = T, \, \mathsf{Oc}(p', e) = S \right\} \right| \end{aligned}$

- *p* and *p'* are non-overlapping and "interchangeable".
 Example: 1000 ⁵⁵/₂ 1110. Proof uses inclusion-exclusion.
- ▶ p and p' are overlapping. Example: <u>0102</u> ⁵⁵ <u>0112</u>. Proof uses a block decomposition of inversion sequences.

Equivalences are proved differently, but there are three main cases:

▶ p and p' are non-overlapping, mutually non-overlapping and "interchangeable". Example: 1002 ⁵⁵ 1012.

Proof is bijective, and distribution of occurrences is symmetric:

 $\begin{aligned} \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = S, \, \mathsf{Oc}(p', e) = T \right\} \right| \\ &= \left| \left\{ e \in \mathsf{I}_n : \mathsf{Oc}(p, e) = T, \, \mathsf{Oc}(p', e) = S \right\} \right| \end{aligned}$

- *p* and *p'* are non-overlapping and "interchangeable".
 Example: 1000 ⁵⁵/₂ 1110. Proof uses inclusion-exclusion.
- ▶ p and p' are overlapping. Example: <u>0102</u> ⁵⁵ <u>0112</u>. Proof uses a block decomposition of inversion sequences.

The 75 consecutive patterns of length 4 fall into 55 equivalence classes.

Some equivalences generalize to longer patterns:

Theorem. For every $r \ge 1$ and $s \ge 2$,

 $0^r 1 0^r 2 0^r \dots (s-1) 0^r s \stackrel{ss}{\sim} 0^r 1 1^r 2 2^r \dots (s-1) (s-1)^r s$

$$\frac{s \, 0^r \, (s-1) \, 0^r \dots 0^r \, 10^r}{\overset{ss}{\sim}} \frac{s \, (s-1)^r \, s \, (s-2)^r \, s \dots s \, 1^r s \, 0^r}{s \, (s-1)^r \, (s-1) \, (s-2)^r \, (s-2) \dots 1^r 1 \, 0^r}$$

Let $R_1, R_2 \in \{\leq, \geq, <, >, =, \neq\}.$

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids (R_1, R_2) . Let $R_1, R_2 \in \{ \leq, \geq, <, >, =, \neq \}.$

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids $(\underline{R_1, R_2})$.

For example, *e* contains (<,=) if $e_i < e_{i+1} = e_{i+2}$ for some *i*.

Let $R_1, R_2 \in \{ \le, \ge, <, >, =, \neq \}$.

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids (R_1, R_2) .

For example, e contains (<,=) if $e_i < e_{i+1} = e_{i+2}$ for some i.

Let $I_n(\underline{R_1, R_2}) = \{e \in I_n : e \text{ avoids } (\underline{R_1, R_2})\}.$

Let $R_1, R_2 \in \{ \le, \ge, <, >, =, \neq \}$.

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids (R_1, R_2) .

For example, e contains (<,=) if $e_i < e_{i+1} = e_{i+2}$ for some i.

Let $I_n(\underline{R_1, R_2}) = \{e \in I_n : e \text{ avoids } (\underline{R_1, R_2})\}.$

Example. 0103323431 \notin $I_{10}(\geq, >)$ but 0023224337 \in $I_{10}(\geq, >)$.

Let $R_1, R_2 \in \{ \le, \ge, <, >, =, \neq \}$.

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids (R_1, R_2) .

For example, e contains (<,=) if $e_i < e_{i+1} = e_{i+2}$ for some i.

Let $I_n(\underline{R_1, R_2}) = \{e \in I_n : e \text{ avoids } (\underline{R_1, R_2})\}.$

Example. $0103323431 \notin I_{10}(\geq, >)$ but $0023224337 \in I_{10}(\geq, >)$.

Let $R_1, R_2 \in \{\leq, \geq, <, >, =, \neq\}.$

 $e \in I_n$ contains the (consecutive) pattern of relations $(\underline{R_1, R_2})$ if there is an *i* such that $e_i R_1 e_{i+1}$ and $e_{i+1} R_2 e_{i+2}$. Otherwise, *e* avoids (R_1, R_2) .

For example, e contains (<,=) if $e_i < e_{i+1} = e_{i+2}$ for some i.

Let $I_n(\underline{R_1, R_2}) = \{e \in I_n : e \text{ avoids } (\underline{R_1, R_2})\}.$

Example. $0103323431 \notin I_{10}(\geq, >)$ but $0023224337 \in I_{10}(\geq, >)$.

We define the relations \sim , $\stackrel{s}{\sim}$ and $\stackrel{ss}{\sim}$ for patterns of relations like we did for patterns.

Goal 3: Classify patterns of relations into equivalence classes and determine $|I_n(R_1, R_2)|$.

Theorem. A complete list of equivalences between consecutive patterns of relations (R_1, R_2) is as follows:

- $\blacktriangleright (\underline{\geq}, \underline{<}) \stackrel{ss}{\sim} (\underline{<}, \underline{\geq}) \sim (\underline{\neq}, \underline{\geq})$
- $\blacktriangleright (\underline{\geq}, \underline{\geq}) \stackrel{ss}{\sim} (\underline{<}, \underline{<})$
- $\blacktriangleright (\underline{\geq}, \underline{=}) \stackrel{ss}{\sim} (\underline{=}, \underline{\geq})$

► $(\geq, >) \stackrel{ss}{\sim} (>, \geq)$ ► $(>, =) \stackrel{ss}{\sim} (=, >)$

Theorem. A complete list of equivalences between consecutive patterns of relations (R_1, R_2) is as follows:

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Theorem. A complete list of equivalences between consecutive patterns of relations (R_1, R_2) is as follows:

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Corollary (conjectured by Baxter–Pudwell, proved non-bijectively by Baxter–Shattuck and Kasraoui). The vincular permutation patterns <u>124</u>3 and <u>421</u>3 are Wilf equivalent.

Theorem. A complete list of equivalences between consecutive patterns of relations (R_1, R_2) is as follows:

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Corollary (conjectured by Baxter–Pudwell, proved non-bijectively by Baxter–Shattuck and Kasraoui). The vincular permutation patterns <u>124</u>3 and <u>421</u>3 are Wilf equivalent.

New bijective proof: $S_n(\underline{1243}) \leftrightarrow I_n(\underline{>,\geq}) \leftrightarrow I_n(\underline{>,>}) \leftrightarrow S_n(\underline{4213}).$

Avoiding patterns of relations

Patterns of relations for which the sequence $|I_n(\underline{R_1, R_2})|$ appears in the OEIS as enumerating other objects:

Pattern $(\underline{R_1}, \underline{R_2})$	OEIS	Description
(\leq,\neq)	A040000	2 (for $n > 1$)
$(\underline{\leq}, \underline{\geq})$	A000027	n
(\geq,\neq)	A000124	$\binom{n}{2} + 1$
$(\underline{\geq}, \underline{\leq})$	A000045	<i>F</i> _{n+1} (Fibonacci)
(\neq,\leq)	A000071	$F_{n+2} - 1$ (Fibonacci)
$(\geq,<)\stackrel{ss}{\sim}(<,\geq)\sim(\neq,\geq)$	A000079	2^{n-1}
(eq, eq)	A000085	Number of involutions of [n]
$(\leq, >)$	A000108	<i>C</i> _n (Catalan)
$(\underline{>,\leq})$	A071356	Underdiagonal paths of from the origin to $x = n$ with steps (0, 1), (1, 0), (1, 2)
$(\underline{=}, \neq)$	A003422	$0! + 1! + 2! + \cdots + (n - 1)!$
$(\geq,\geq)\stackrel{ss}{\sim}(<,<)$	A049774	$ S_n(321) $
$(\underline{\neq},\underline{=})$	A000522	$\sum_{i=0}^{n-1} (n-1)!/i!$
$(\underline{\geq},\geq)\stackrel{\mathrm{ss}}{\sim}(\underline{>},\underline{\geq})$	A200403	$ S_n(1243) $
$(\underline{=},\underline{=})$	A052169	$\frac{(n+1)!-d_{n+1}}{n}$

Sergi Elizalde

Consecutive Patterns in Inversion Sequences

Let $e \in I_n$.

 $e \in I_n(\underline{\geq}, \underline{\leq})$ iff there exists j such that

 $e_1 < e_2 < \cdots < e_j \ge e_{j+1} > e_{j+2} > \cdots > e_n.$

Let $e \in I_n$.

 $e \in I_n(\underline{\geq}, \leq)$ iff there exists j such that $e_1 < e_2 < \cdots < e_j \ge e_{j+1} > e_{j+2} > \cdots > e_n.$ $\implies |I_n(\geq, \leq)| = F_{n+1}.$

Let $e \in I_n$.

 $e \in I_n(\underline{\geq}, \leq)$ iff there exists j such that $e_1 < e_2 < \cdots < e_j \geq e_{j+1} > e_{j+2} > \cdots > e_n.$ $\implies |I_n(\geq, \leq)| = F_{n+1}.$

 $e \in I_n(\leq, >)$ iff $e_1 \leq e_2 \leq \cdots \leq e_n$.

Let $e \in I_n$.

 $e \in I_n(\underline{\geq}, \leq)$ iff there exists j such that $e_1 < e_2 < \cdots < e_j \ge e_{j+1} > e_{j+2} > \cdots > e_n.$ $\implies |I_n(\geq, \leq)| = F_{n+1}.$

 $e \in I_n(\underline{\leq}, >)$ iff $e_1 \leq e_2 \leq \cdots \leq e_n$. $\implies |I_n(\underline{\geq}, \leq)| = C_n$.

 $e \in I_n(\geq, \leq)$ iff there exists j such that

 $e_1 \leq e_2 \leq \cdots \leq e_j > e_{j+1} > \cdots > e_n.$

 $e \in I_n(>, \leq)$ iff there exists j such that

 $e_1 \leq e_2 \leq \cdots \leq e_j > e_{j+1} > \cdots > e_n.$

Theorem (conjectured by Martinez–Savage, proved independently by Cao–Jin–Lin and Hossain).

$$\sum_{n\geq 0} \left| \mathsf{I}_n(\underline{>,\leq}) \right| x^n = \frac{1-2x-\sqrt{1-4x-4x^2}}{4x^2}.$$

 $e \in I_n(>, \leq)$ iff there exists j such that

 $e_1 \leq e_2 \leq \cdots \leq e_j > e_{j+1} > \cdots > e_n.$

Theorem (conjectured by Martinez–Savage, proved independently by Cao–Jin–Lin and Hossain).

$$\sum_{n\geq 0} \left| \mathsf{I}_n(\underline{>,\leq}) \right| x^n = \frac{1-2x-\sqrt{1-4x-4x^2}}{4x^2}.$$

The pattern $I_n(\geq,\leq)$

 $e \in I_n(>, \leq)$ iff there exists j such that

 $e_1 \leq e_2 \leq \cdots \leq e_j > e_{j+1} > \cdots > e_n.$

Theorem (conjectured by Martinez–Savage, proved independently by Cao–Jin–Lin and Hossain).

$$\sum_{n\geq 0} |I_n(\geq, \leq)| x^n = \frac{1-2x-\sqrt{1-4x-4x^2}}{4x^2}.$$

Using the interpretation as marked lattice paths, we also obtain:

► the distribution of the statistic #{distinct entries in e} is symmetric on I_n(>, ≤) (conjectured by Martinez-Savage),

 $e \in I_n(>, \leq)$ iff there exists j such that

 $e_1 \leq e_2 \leq \cdots \leq e_j > e_{j+1} > \cdots > e_n.$

Theorem (conjectured by Martinez–Savage, proved independently by Cao–Jin–Lin and Hossain).

$$\sum_{n\geq 0} \left| \mathsf{I}_n(\underline{>,\leq}) \right| x^n = \frac{1-2x-\sqrt{1-4x-4x^2}}{4x^2}.$$

Using the interpretation as marked lattice paths, we also obtain:

- ► the distribution of the statistic #{distinct entries in e} is symmetric on I_n(>, ≤) (conjectured by Martinez-Savage),
- enumeration formulas for inversion sequences satisfying other unimodality conditions.

References

- Juan S. Auli and Sergi Elizalde, *Consecutive patterns in inversion sequences*, Discrete Math. Theor. Comput. Sci. 21 (2019), #6.
- Juan S. Auli and Sergi Elizalde, Consecutive patterns in inversion sequences II: avoiding patterns of relations, J. Integer Seq. 22 (2019), Art. 19.7.5.
- Andrew M. Baxter and Lara K. Pudwell, *Enumeration schemes for vincular patterns*, Discrete Math., 312 (2012), 1699–1712.
- Andrew Baxter and Mark Shattuck, Some Wilf-equivalences for vincular patterns, J. Comb., 6 (2015), 19–45.
- Wenqin Cao, Emma Yu Jin and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Appl. Math., 260 (2019), 86–97.
- Sylvie Corteel, Megan A. Martinez, Carla D. Savage and Michael Weselcouch, *Patterns in inversion sequences I*, Discrete Math. Theor. Comput. Sci., **18** (2016), 21 pp.
- Tim Dwyer and Sergi Elizalde, Wilf equivalence relations for consecutive patterns, Adv. in Appl. Math., 99 (2018), 134–157.
- Anisse Kasraoui, New Wilf-equivalence results for vincular patterns, European J. Combin., 34 (2013), 322–337.
- Toufik Mansour and Mark Shattuck, Pattern avoidance in inversion sequences, Pure Math. Appl. (PU.M.A.), 25 (2015),157–176.
- Megan A. Martinez and Carla D. Savage, Patterns in inversion sequences II: Inversion sequences avoiding triples of relations, J. Integer Seq., 21 (2018), Art. 18.2.2.