Consecutive Patterns in Inversion Sequences

Sergi Elizalde

Dartmouth College

Joint work with Juan Auli

AMS Fall Southeastern Sectional Meeting Gainesville, FL, November 2019

Special Session on Patterns in Permutations

Inversion sequences

An inversion sequence of length n is an integer sequence $e=e_{1} e_{2} \cdots e_{n}$ such that $0 \leq e_{i}<i$.
$\mathbf{I}_{n}=$ set of inversion sequences of length n.

Inversion sequences

An inversion sequence of length n is an integer sequence $e=e_{1} e_{2} \cdots e_{n}$ such that $0 \leq e_{i}<i$.
$\mathbf{I}_{n}=$ set of inversion sequences of length n.
Example. $e=00213 \in \mathbf{I}_{5}$.

Permutations can be encoded as inversion sequences via the bijection $\Theta: S_{n} \rightarrow \mathbf{I}_{n}$, defined by $\Theta(\pi)=e_{1} e_{2} \cdots e_{n}$ where

$$
e_{i}=\mid\left\{j: j<i \text { and } \pi_{j}>\pi_{i}\right\} \mid
$$

For instance, $\Theta(35142)=00213$.

Classical patterns in inversion sequences

- The reduction of a sequence is obtained by replacing its smallest entry with 0 , its second smallest with 1 , etc.

Classical patterns in inversion sequences

- The reduction of a sequence is obtained by replacing its smallest entry with 0 , its second smallest with 1 , etc.
- e contains the (classical) pattern $p=p_{1} p_{2} \cdots p_{l}$ if there is a subsequence $e_{i_{1}} e_{i_{2}} \cdots e_{i_{1}}$ whose reduction is p. Otherwise, e avoids p.

Classical patterns in inversion sequences

- The reduction of a sequence is obtained by replacing its smallest entry with 0 , its second smallest with 1 , etc.
- e contains the (classical) pattern $p=p_{1} p_{2} \cdots p_{l}$ if there is a subsequence $e_{i_{1}} e_{i_{2}} \cdots e_{i_{1}}$ whose reduction is p. Otherwise, e avoids p.

Example. $e=00213$ contains 012 and 001, but it avoids 201 and 110 .

Classical patterns in inversion sequences

- The reduction of a sequence is obtained by replacing its smallest entry with 0 , its second smallest with 1 , etc.
- e contains the (classical) pattern $p=p_{1} p_{2} \cdots p_{l}$ if there is a subsequence $e_{i_{1}} e_{i_{2}} \cdots e_{i_{1}}$ whose reduction is p. Otherwise, e avoids p.

Example. $e=00213$ contains 012 and 001, but it avoids 201 and 110 .

Let $\mathbf{I}_{n}(p)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.p\right\}$.
For example, $I_{3}(001)=\{000,010,011,012\}$.
The avoidance sequences $\left|\mathbf{I}_{n}(p)\right|$ have been studied by
Corteel-Martinez-Savage-Weselcouch and by Mansour-Shattuck.
Go to Megan's talk tomorrow to hear more about this!

Consecutive patterns in inversion sequences

$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern $p=\underline{p_{1} p_{2} \cdots p_{l}}$ if there is a consecutive subsequence $e_{i} e_{i+1} \cdots e_{i+l-1}$ whose reduction is p. Otherwise, e avoids p.
Example. $e=0023013$ contains $\underline{012}$ and 120, but it avoids $\underline{000}$ and 010 .

Consecutive patterns in inversion sequences

$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern $p=\underline{p_{1} p_{2} \cdots p_{l}}$ if there is a consecutive subsequence $e_{i} e_{i+1} \cdots e_{i+l-1}$ whose reduction is p. Otherwise, e avoids p.
Example. $e=0023013$ contains $\underline{012}$ and 120, but it avoids $\underline{000}$ and 010 .

$\mathbf{I}_{n}(p)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.p\right\}$.
Goal 1: determine $\left|\mathbf{I}_{n}(p)\right|$ for consecutive patterns $p=\underline{p_{1} p_{2} \cdots p_{l}}$.

Avoiding consecutive patterns of length 3

Let $\mathbf{I}_{n, k}(p)=\left\{e \in \mathbf{I}_{n}(p): e_{n}=k\right\}$, so that $\mathbf{I}_{n}(p)=\bigcup_{k=0}^{n-1} \mathbf{I}_{n, k}(p)$.

Avoiding consecutive patterns of length 3

Let $\mathbf{I}_{n, k}(p)=\left\{e \in \mathbf{I}_{n}(p): e_{n}=k\right\}$, so that $\mathbf{I}_{n}(p)=\bigcup_{k=0}^{n-1} \mathbf{I}_{n, k}(p)$.

Pattern p	$\left\|\mathbf{I}_{n}(p)\right\|$ in the OEIS	Recurrence for $\left\|\mathbf{I}_{n, k}(p)\right\|$
$\underline{012}$	A049774*, equals $\left\|S_{n}(\underline{321})\right\|$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{l=1}^{k-1} \sum_{j=0}^{l-1} \sum_{i>j}\left\|\mathbf{I}_{n-3, i}(p)\right\|$
$\underline{\text { A021 }}$	equals $\left\|S_{n}(\underline{1324})\right\|$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-(n-2-k) \sum_{j=0}^{k-1}\left\|\mathbf{I}_{n-2, j}(p)\right\|$
$\underline{102}$	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j \geq 1} j\left\|\mathbf{I}_{n-2, j}(p)\right\|$
$\underline{\underline{120}}$	A200404,	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j>k}(n-2-j)\left\|\mathbf{I}_{n-2, j}(p)\right\|$
$\underline{\underline{201}}$	equals $\left\|S_{n}(\underline{1432})\right\|$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-k \sum_{j>k}\left\|\mathbf{I}_{n-2, j}(p)\right\|$

* Formulas were known for these sequences.

Avoiding consecutive patterns of length 3

Let $\mathbf{I}_{n, k}(p)=\left\{e \in \mathbf{I}_{n}(p): e_{n}=k\right\}$, so that $\mathbf{I}_{n}(p)=\bigcup_{k=0}^{n-1} \mathbf{I}_{n, k}(p)$.

Pattern p	$\left\|\mathbf{I}_{n}(p)\right\|$ in the OEIS	Recurrence for $\left\|\mathbf{I}_{n, k}(p)\right\|$
012	$\begin{gathered} \mathrm{A} 049774^{*}, \\ \text { equals }\left\|S_{n}(\underline{321})\right\| \end{gathered}$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{l=1}^{k-1} \sum_{j=0}^{l-1} \sum_{i>j}\left\|\mathbf{I}_{n-3, i}(p)\right\|$
021	$\begin{gathered} \mathrm{A} 071075^{*}, \\ \text { equals }\left\|S_{n}(\underline{1324})\right\| \end{gathered}$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-(n-2-k) \sum_{j=0}^{k-1}\left\|\mathbf{I}_{n-2, j}(p)\right\|$
102	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j \geq 1} j\left\|\mathbf{I}_{n-2, j}(p)\right\|$
120	A200404, equals $\mid S_{n}(\underline{1432)} \mid$	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j>k}(n-2-j)\left\|\mathbf{I}_{n-2, j}(p)\right\|$
$\underline{201}$	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-k \sum_{j>k}\left\|\mathbf{I}_{n-2, j}(p)\right\|$
$\underline{210}$	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{l=k+1}^{n-4} \sum_{j=l+1}^{n-3} \sum_{i \leq j}\left\|\mathbf{I}_{n-3, i}(p)\right\|$
000	A052169*	$\left\|\mathbf{I}_{n}(p)\right\|=\frac{(n+1)!-d_{n+1}}{n}$, where $d_{n}=$ \# derangements
$\underline{001}$	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j<k}\left\|\mathbf{I}_{n-2, j}(p)\right\|$
010	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-(n-2-k)\left\|\mathbf{I}_{n-2, k}(p)\right\|$
$\underline{011}$	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j<k}\left\|\mathbf{I}_{n-2, j}(p)\right\|$ (if $\left.k \neq n-1\right)$
100, 110	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-\sum_{j>k}\left\|\mathbf{I}_{n-2, j}(p)\right\|$
101	New	$\left\|\mathbf{I}_{n, k}(p)\right\|=\left\|\mathbf{I}_{n-1}(p)\right\|-k\left\|\mathbf{I}_{n-2, k}(p)\right\|$

* Formulas were known for these sequences.

Recurrences

For $p=\underline{110}$:

$$
\left|\mathbf{I}_{n, k}(\underline{110})\right|=\left|\mathbf{I}_{n-1}(\underline{110})\right|-\sum_{j>k}\left|\mathbf{I}_{n-2, j}(\underline{110})\right| .
$$

Recurrences

For $p=\underline{110}$:

$$
\left|\mathbf{I}_{n, k}(\underline{110})\right|=\left|\mathbf{I}_{n-1}(\underline{110})\right|-\sum_{j>k}\left|\mathbf{I}_{n-2, j}(\underline{110})\right| .
$$

For $p=\underline{000}$:

$$
\left|\mathbf{I}_{n}(\underline{000})\right|=(n-1)\left|\mathbf{I}_{n-1}(\underline{000})\right|+(n-2)\left|\mathbf{I}_{n-2}(\underline{000})\right| .
$$

Recurrences

For $p=\underline{110}$:

$$
\left|\mathbf{I}_{n, k}(\underline{110})\right|=\left|\mathbf{I}_{n-1}(\underline{110})\right|-\sum_{j>k}\left|\mathbf{I}_{n-2, j}(\underline{110})\right| .
$$

For $p=\underline{000}$:

$$
\left|\mathbf{I}_{n}(\underline{000})\right|=(n-1)\left|\mathbf{I}_{n-1}(\underline{000})\right|+(n-2)\left|\mathbf{I}_{n-2}(\underline{000})\right| .
$$

$\Rightarrow \quad\left|\mathbf{I}_{n}(p)\right|=\frac{(n+1)!-d_{n+1}}{n}$, where $d_{n}=\#$ derrangements in S_{n}.

Recurrences

For $p=\underline{110}$:

$$
\left|\mathbf{I}_{n, k}(\underline{110})\right|=\left|\mathbf{I}_{n-1}(\underline{110})\right|-\sum_{j>k}\left|\mathbf{I}_{n-2, j}(\underline{110})\right| .
$$

For $p=\underline{000}$:

$$
\left|\mathbf{I}_{n}(\underline{000})\right|=(n-1)\left|\mathbf{I}_{n-1}(\underline{000})\right|+(n-2)\left|\mathbf{I}_{n-2}(\underline{000})\right| .
$$

$\Rightarrow \quad\left|\mathbf{I}_{n}(p)\right|=\frac{(n+1)!-d_{n+1}}{n}$, where $d_{n}=\#$ derrangements in S_{n}.
Open: find a direct bijective proof.

Recurrences

For $p=\underline{110}$:

$$
\left|\mathbf{I}_{n, k}(\underline{110})\right|=\left|\mathbf{I}_{n-1}(\underline{110})\right|-\sum_{j>k}\left|\mathbf{I}_{n-2, j}(\underline{110})\right| .
$$

For $p=\underline{000}$:

$$
\left|\mathbf{I}_{n}(\underline{000})\right|=(n-1)\left|\mathbf{I}_{n-1}(\underline{000})\right|+(n-2)\left|\mathbf{I}_{n-2}(\underline{000})\right| .
$$

$\Rightarrow \quad\left|\mathbf{I}_{n}(p)\right|=\frac{(n+1)!-d_{n+1}}{n}$, where $d_{n}=\#$ derrangements in S_{n}.
Open: find a direct bijective proof.
More generally, for $p=\underline{0^{r}}$:

$$
\left|\mathbf{I}_{n}\left(\underline{0}^{r}\right)\right|=\sum_{j=1}^{r-1}(n-j)\left|\mathbf{I}_{n-j}\left(\underline{0^{r}}\right)\right| .
$$

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. $\mathrm{Oc}(\underline{(012}, 0023013)=\{2,5\}$.

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. $\mathrm{Oc}(\underline{(012}, 0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \sim p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\operatorname{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(\underline{012}, 0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \sim p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=m\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=m\right\}\right| \quad \forall n, m
$$

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\mathrm{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. $\mathrm{Oc}(\underline{012}, 0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \sim p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=m\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=m\right\}\right| \quad \forall n, m
$$

- super-strongly Wilf equivalent, denoted $p \stackrel{s s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right| \quad \forall n, S \subseteq[n] .
$$

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\mathrm{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. $\mathrm{Oc}(\underline{012}, 0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \sim p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=m\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=m\right\}\right| \quad \forall n, m
$$

- super-strongly Wilf equivalent, denoted $p \stackrel{s s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right| \quad \forall n, S \subseteq[n] .
$$

Note that $p \stackrel{s s}{\sim} p^{\prime} \Rightarrow p \stackrel{s}{\sim} p^{\prime} \Rightarrow p \sim p^{\prime}$.

Equivalences between patterns

For $e \in \mathbf{I}_{n}$ and a consecutive pattern p, let

$$
\mathrm{Oc}(p, e)=\left\{i: e_{i} e_{i+1} e_{i+2} \text { is an occurence of } p\right\} .
$$

Example. Oc $(\underline{012}, 0023013)=\{2,5\}$.
Definition. Two consecutive patterns p and p^{\prime} are:

- Wilf equivalent, denoted $p \sim p^{\prime}$, if

$$
\left|\mathbf{I}_{n}(p)\right|=\left|\mathbf{I}_{n}\left(p^{\prime}\right)\right| \quad \forall n .
$$

- strongly Wilf equivalent, denoted $p \stackrel{s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}:|\operatorname{Oc}(p, e)|=m\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}:\left|\operatorname{Oc}\left(p^{\prime}, e\right)\right|=m\right\}\right| \quad \forall n, m
$$

- super-strongly Wilf equivalent, denoted $p \stackrel{s s}{\sim} p^{\prime}$, if

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right| \quad \forall n, S \subseteq[n] .
$$

Note that $p \stackrel{s s}{\sim} p^{\prime} \Rightarrow p \stackrel{s}{\sim} p^{\prime} \Rightarrow p \sim p^{\prime}$.
Goal 2: classify consecutive patterns into these equivalence classes.

Equivalences between patterns of length 3

$\left|\mathbf{I}_{n}(\underline{100})\right|$ and $\left|\mathbf{I}_{n}(\underline{110})\right|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.

Equivalences between patterns of length 3

$\left|\mathbf{I}_{n}(\underline{100})\right|$ and $\left|\mathbf{I}_{n}(\underline{110})\right|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.
Theorem. $\underline{100} \stackrel{s 5}{\sim} \underline{110}$.

Equivalences between patterns of length 3

$\left|\mathbf{I}_{n}(\underline{100})\right|$ and $\left|\mathbf{I}_{n}(\underline{110})\right|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.
Theorem. $100 \stackrel{s 5}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq[n]$, construct a bijection

$$
\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{100}, e) \supseteq S\right\} \longrightarrow\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{110}, e) \supseteq S\right\}
$$

that replaces occurrences of 100 in positions S with occurrences of 110 .

Equivalences between patterns of length 3

$\left|\mathbf{I}_{n}(\underline{100})\right|$ and $\left|I_{n}(\underline{110})\right|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.
Theorem. $\underline{100} \stackrel{s 5}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq[n]$, construct a bijection

$$
\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{100}, e) \supseteq S\right\} \longrightarrow\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{110}, e) \supseteq S\right\}
$$

that replaces occurrences of 100 in positions S with occurrences of 110 .
2. Using inclusion-exclusion, we get

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{100}, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{110}, e)=S\right\}\right| .
$$

Equivalences between patterns of length 3

$\left|\mathbf{I}_{n}(\underline{100})\right|$ and $\left|I_{n}(\underline{110})\right|$ satisfy the same recurrence, so $\underline{100} \sim \underline{110}$.
Theorem. $100 \stackrel{s 5}{\sim} \underline{110}$.

Proof sketch.

1. For any $S \subseteq[n]$, construct a bijection

$$
\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{100}, e) \supseteq S\right\} \longrightarrow\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{110}, e) \supseteq S\right\}
$$

that replaces occurrences of 100 in positions S with occurrences of 110 .
2. Using inclusion-exclusion, we get

$$
\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{100}, e)=S\right\}\right|=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(\underline{110}, e)=S\right\}\right| .
$$

This is the only equivalence between consecutive patterns of length 3.

Patterns of length 4

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

- $\underline{0102} \stackrel{5 s}{\sim} \underline{0112}$
- $0021 \stackrel{\text { ss }}{\sim} \underline{0121}$
- $1002 \stackrel{5 s}{\sim} 1012 \stackrel{s s}{\sim} 1102$
- $\underline{0100} \stackrel{\text { ss }}{\sim} \underline{0110}$
- $2013 \stackrel{\text { ss }}{\sim} \underline{2103}$
- $\underline{1200} \stackrel{s 5}{\sim} \underline{1210} \stackrel{\text { ss }}{\sim} \underline{1220}$
- $\underline{0211} \stackrel{s s}{\sim} \underline{0221}$
- $1000 \stackrel{5 s}{\sim} \underline{1110}$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{\text { ss }}{\sim} 2210$
- $\underline{2001} \stackrel{\text { ss }}{\sim} \underline{2011} \stackrel{\text { ss }}{\sim} \underline{2101} \stackrel{\text { ss }}{\sim} \underline{2201}$
- $2012 \stackrel{\text { ss }}{\sim} 2102$
- $\underline{2010} \stackrel{s 5}{\sim} \underline{2110} \stackrel{s s}{\sim} \underline{2120}$
- $3012 \stackrel{55}{\sim} 3102$

Patterns of length 4

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

```
- 0102 \stackrel{ss 0112}{~}
- \(0021 \stackrel{\text { ss }}{\sim} 0121\)
- \(1002 \stackrel{s s}{\sim} 1012 \stackrel{s s}{\sim} 1102\)
- \(\underline{0100} \stackrel{\text { ss }}{\sim} \underline{0110}\)
- \(2013 \stackrel{\text { ss }}{\sim} \underline{2103}\)
- \(1200 \stackrel{\text { ss }}{\sim} \underline{1210} \stackrel{\text { ss }}{\sim} \underline{1220}\)
- \(0211 \stackrel{5 s}{\sim} \underline{0221}\)
```

- $1000 \stackrel{5 s}{\sim} \underline{1110}$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{\text { ss }}{\sim} 2210$
- $\underline{2001} \stackrel{\text { ss }}{\sim} \underline{2011} \sim \underline{\text { ss }} \sim \underline{2101} \stackrel{\text { ss }}{\sim} \underline{2201}$
- $2012 \stackrel{\text { ss }}{\sim} 2102$
- $\underline{2010} \stackrel{\text { ss }}{\sim} \underline{2110} \stackrel{\text { ss }}{\sim} \underline{2120}$
- $3012 \stackrel{\text { ss }}{\sim} 3102$

Conjecture. If p and p^{\prime} are consecutive patterns of length m in inversion sequences, then

$$
p \sim p^{\prime} \Longleftrightarrow p \stackrel{s}{\sim} p^{\prime}
$$

Patterns of length 4

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

```
- 0102 \stackrel{ss 0112}{~}
-0021 \stackrel{ss 0121}{~}
- 1002 }\stackrel{ss}{~}1012~ ss 1102
- 0100 \stackrel{ss}{~}\underline{0110}
- 2013 }\stackrel{ss}{~
- 1200 \stackrel{ss 1210}{~}~~}
- 0211 \stackrel{ss 0221}{~}
```

- $1000 \stackrel{5 s}{\sim} \underline{1110}$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{\text { ss }}{\sim} 2210$
- $\underline{2001} \stackrel{\text { ss }}{\sim} \underline{2011} \stackrel{\text { ss }}{\sim} \underline{2101} \stackrel{\text { ss }}{\sim} \underline{2201}$
- $2012 \stackrel{\text { ss }}{\sim} \underline{2102}$
- $\underline{2010} \stackrel{s s}{\sim} \underline{2110} \stackrel{s s}{\sim} \underline{2120}$
- $3012 \stackrel{55}{\sim} 3102$

Conjecture. If p and p^{\prime} are consecutive patterns of length m in inversion sequences, then

$$
p \sim p^{\prime} \Longleftrightarrow p \stackrel{s}{\sim} p^{\prime}
$$

Analogous to Nakamura's conjecture for consecutive patterns in permutations.

Patterns of length 4

Theorem. A complete list of equivalences between consecutive patterns of length 4 is as follows:

```
- 0102 \stackrel{ss 0112}{~}
-0021 \stackrel{ss 0121}{~}
- 1002 }\stackrel{ss}{~}1012~ ss 1102
- 0100 \stackrel{ss}{~}\underline{0110}
- 2013 }\stackrel{s5}{~}\underline{2103
- 1200 \stackrel{ss 1210}{~}~~}
- 0211 \stackrel{ss 0221}{~}
```

- $1000 \stackrel{5 s}{\sim} \underline{1110}$
- $1001 \stackrel{\text { ss }}{\sim} 1011 \stackrel{\text { ss }}{\sim} 1101$
- $2100 \stackrel{\text { ss }}{\sim} 2210$
- $\underline{2001} \stackrel{\text { ss }}{\sim} \underline{2011} \stackrel{\text { ss }}{\sim} \underline{2101} \stackrel{\text { ss }}{\sim} \underline{2201}$
- $2012 \stackrel{\text { ss }}{\sim} \underline{2102}$
- $\underline{2010} \stackrel{s s}{\sim} \underline{2110} \stackrel{s s}{\sim} \underline{2120}$
- $3012 \stackrel{55}{\sim} 3102$

Conjecture. If p and p^{\prime} are consecutive patterns of length m in inversion sequences, then

$$
p \sim p^{\prime} \Longleftrightarrow p \stackrel{s}{\sim} p^{\prime} \stackrel{? ?}{\Longleftrightarrow} p \stackrel{s s}{\rightleftharpoons} p^{\prime}
$$

Analogous to Nakamura's conjecture for consecutive patterns in permutations.

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{s s}{\sim} \underline{1012 .}$

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{s s}{\sim} \underline{1012}$.
Proof is bijective, and distribution of occurrences is symmetric:

$$
\begin{aligned}
& \left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S, \operatorname{Oc}\left(p^{\prime}, e\right)=T\right\}\right| \\
& \quad=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=T, \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right|
\end{aligned}
$$

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{5 s}{\sim} 1012$.
Proof is bijective, and distribution of occurrences is symmetric:

$$
\begin{aligned}
& \left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S, \operatorname{Oc}\left(p^{\prime}, e\right)=T\right\}\right| \\
& \quad=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=T, \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right|
\end{aligned}
$$

- p and p^{\prime} are non-overlapping and "interchangeable". Example: $1000 \stackrel{s s}{\sim} \underline{1110 .}$

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{5 s}{\sim} 1012$.
Proof is bijective, and distribution of occurrences is symmetric:

$$
\begin{aligned}
& \left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S, \operatorname{Oc}\left(p^{\prime}, e\right)=T\right\}\right| \\
& \quad=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=T, \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right|
\end{aligned}
$$

- p and p^{\prime} are non-overlapping and "interchangeable". Example: $1000 \stackrel{s 5}{\sim} \underline{1110}$. Proof uses inclusion-exclusion.

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{5 s}{\sim} 1012$.
Proof is bijective, and distribution of occurrences is symmetric:

$$
\begin{aligned}
& \left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S, \operatorname{Oc}\left(p^{\prime}, e\right)=T\right\}\right| \\
& \quad=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=T, \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right|
\end{aligned}
$$

- p and p^{\prime} are non-overlapping and "interchangeable". Example: $1000 \stackrel{s 5}{\sim} \underline{1110}$. Proof uses inclusion-exclusion.
- p and p^{\prime} are overlapping. Example: $0102 \stackrel{s s}{\sim} \underline{0112 .}$ Proof uses a block decomposition of inversion sequences.

Proof ideas

Equivalences are proved differently, but there are three main cases:

- p and p^{\prime} are non-overlapping, mutually non-overlapping and "interchangeable". Example: $1002 \stackrel{5 s}{\sim} 1012$.
Proof is bijective, and distribution of occurrences is symmetric:

$$
\begin{aligned}
& \left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=S, \operatorname{Oc}\left(p^{\prime}, e\right)=T\right\}\right| \\
& \quad=\left|\left\{e \in \mathbf{I}_{n}: \operatorname{Oc}(p, e)=T, \operatorname{Oc}\left(p^{\prime}, e\right)=S\right\}\right|
\end{aligned}
$$

- p and p^{\prime} are non-overlapping and "interchangeable". Example: $1000 \stackrel{s 5}{\sim} \underline{1110}$. Proof uses inclusion-exclusion.
- p and p^{\prime} are overlapping. Example: $0102 \stackrel{s s}{\sim} \underline{0112 .}$ Proof uses a block decomposition of inversion sequences.

The 75 consecutive patterns of length 4 fall into 55 equivalence classes.

Longer patterns

Some equivalences generalize to longer patterns:
Theorem. For every $r \geq 1$ and $s \geq 2$,

$$
\underline{0^{r} 10^{r} 20^{r} \ldots(s-1) 0^{r} s} \stackrel{s s}{\sim} \underline{0}^{r} 11^{r} 22^{r} \ldots(s-1)(s-1)^{r} s
$$

$$
\begin{aligned}
& \underline{s 0^{r}(s-1) 0^{r} \ldots 0^{r} 10^{r}} \stackrel{s s}{\sim} \underline{s(s-1)^{r} s(s-2)^{r} s \ldots s 1^{r} s 0^{r}} \\
& \stackrel{s s}{\sim} s(s-1)^{r}(s-1)(s-2)^{r}(s-2) \ldots 1^{r} 10^{r}
\end{aligned}
$$

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations ($\underline{R_{1}, R_{2}}$) if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids (\underline{R}_{1}, R_{2}).

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations $\left(\underline{R_{1}, R_{2}}\right)$ if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids ($\underline{R_{1}, R_{2}}$).
For example, e contains $(\underline{<,=})$ if $e_{i}<e_{i+1}=e_{i+2}$ for some i.

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations $\left(\underline{R_{1}, R_{2}}\right)$ if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids ($\underline{R_{1}, R_{2}}$).
For example, e contains ($<,=$) if $e_{i}<e_{i+1}=e_{i+2}$ for some i.
Let $\mathbf{I}_{n}\left(\underline{R_{1}}, R_{2}\right)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.\left(\underline{R_{1}, R_{2}}\right)\right\}$.

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations $\left(\underline{R_{1}, R_{2}}\right)$ if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids (R_{1}, R_{2}).
For example, e contains ($<,=$) if $e_{i}<e_{i+1}=e_{i+2}$ for some i.
Let $\mathbf{I}_{n}\left(\underline{R_{1}}, R_{2}\right)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.\left(\underline{R_{1}, R_{2}}\right)\right\}$.
Example. $0103323431 \notin \mathbf{I}_{10}(\underline{Z},>)$ but $0023224337 \in \mathbf{I}_{10}(\underline{\geq,>})$.

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations $\left(\underline{R_{1}, R_{2}}\right)$ if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids (R_{1}, R_{2}).
For example, e contains ($<,=$) if $e_{i}<e_{i+1}=e_{i+2}$ for some i.
Let $\mathbf{I}_{n}\left(\underline{R_{1}}, R_{2}\right)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.\left(\underline{R_{1}, R_{2}}\right)\right\}$.
Example. $0103323431 \notin \mathbf{I}_{10}(\underline{Z},>)$ but $0023224337 \in \mathbf{I}_{10}(\underline{\geq,>})$.

Patterns of relations

Let $R_{1}, R_{2} \in\{\leq, \geq,<,>,=, \neq\}$.
$e \in \mathbf{I}_{n}$ contains the (consecutive) pattern of relations $\left(\underline{R_{1}, R_{2}}\right)$ if there is an i such that $e_{i} R_{1} e_{i+1}$ and $e_{i+1} R_{2} e_{i+2}$.
Otherwise, e avoids (R_{1}, R_{2}).
For example, e contains ($<,=$) if $e_{i}<e_{i+1}=e_{i+2}$ for some i.
Let $\mathbf{I}_{n}\left(\underline{R_{1}}, R_{2}\right)=\left\{e \in \mathbf{I}_{n}: e\right.$ avoids $\left.\left(\underline{R_{1}, R_{2}}\right)\right\}$.
Example. $0103323431 \notin \mathbf{I}_{10}(\underline{Z},>)$ but $0023224337 \in \mathbf{I}_{10}(\underline{\geq,>})$.
We define the relations $\sim, \stackrel{s}{\sim}$ and $\stackrel{s s}{\sim}$ for patterns of relations like we did for patterns.

Goal 3: Classify patterns of relations into equivalence classes and determine $\left|\mathbf{I}_{n}\left(R_{1}, R_{2}\right)\right|$.

Equivalences between patterns of relations

Theorem. A complete list of equivalences between consecutive patterns of relations (\underline{R}_{1}, R_{2}) is as follows:

- $(\geq,<) \stackrel{s s}{\sim}(<, \geq) \sim(\neq, \geq)$

$$
(\underline{\geq}, \geq) \stackrel{s s}{\sim}(\underline{\leq},<)
$$

$$
\begin{aligned}
& -(\underline{\geq,>}) \stackrel{s s}{\sim}(\geq, \geq) \\
& -(\geq,=) \stackrel{s s}{\sim}(\underline{(=,>)}
\end{aligned}
$$

- $(\geq,=) \stackrel{s s}{\sim}(=, \geq)$

Equivalences between patterns of relations

Theorem. A complete list of equivalences between consecutive patterns of relations ($\underline{R_{1}, R_{2}}$) is as follows:

> - $(\underline{\geq,<)} \stackrel{s s}{\sim}(\leq, \geq) \sim(\not \equiv, \geq)$
> $-(\geq, \geq) \stackrel{s s}{\sim}(\leq,<)$
> $-(\geq,=) \stackrel{s s}{\sim}(=, \geq)$

- $(\geq,>) \stackrel{s s}{\sim}(\geq, \geq)$
- $(\underline{\geq,=}) \stackrel{s s}{\sim}(\underline{(=,>})$

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Equivalences between patterns of relations

Theorem. A complete list of equivalences between consecutive patterns of relations ($\underline{R_{1}, R_{2}}$) is as follows:

$$
\begin{aligned}
& -(\geq,<) \stackrel{s s}{\sim}(<, \geq) \sim(\neq, \geq) \\
& -(\geq, \geq) \stackrel{s s}{\sim}(\leq,<) \\
& -(\geq,=) \stackrel{s s}{\sim}(=, \geq)
\end{aligned}
$$

$$
(\geq,>) \stackrel{s s}{\sim}(\geq, \geq)
$$

$$
(\underline{>}) \stackrel{s s}{\sim}(\underline{=,>})
$$

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Corollary (conjectured by Baxter-Pudwell, proved non-bijectively by Baxter-Shattuck and Kasraoui). The vincular permutation patterns $\underline{1243}$ and $\underline{4213}$ are Wilf equivalent.

Equivalences between patterns of relations

Theorem. A complete list of equivalences between consecutive patterns of relations ($\underline{R_{1}, R_{2}}$) is as follows:

$$
\begin{aligned}
& -(\geq,<) \stackrel{s s}{\sim}(<, \geq) \sim(\neq, \geq) \\
& -(\geq, \geq) \stackrel{s s}{\sim}(\leq,<) \\
& -(\geq,=) \stackrel{s s}{\sim}(=, \geq)
\end{aligned}
$$

$$
(\underline{\geq},>) \stackrel{s s}{\sim}(\geq, \geq)
$$

$$
(\underline{\geq}, \overline{s s}(\underline{(=,>)}
$$

Note: Wilf equivalence and strong Wilf equivalence classes do not coincide for patterns of relations.

Corollary (conjectured by Baxter-Pudwell, proved non-bijectively by Baxter-Shattuck and Kasraoui). The vincular permutation patterns $\underline{1243}$ and $\underline{4213}$ are Wilf equivalent.

New bijective proof:
$S_{n}(\underline{1243}) \leftrightarrow I_{n}(\geq, \geq) \leftrightarrow I_{n}(\underline{\geq, \geq}) \leftrightarrow S_{n}(\underline{4213})$.

Avoiding patterns of relations

Patterns of relations for which the sequence $\left|I_{n}\left(\underline{R_{1}, R_{2}}\right)\right|$ appears in the OEIS as enumerating other objects:

Pattern (R_{1}, R_{2})	OEIS	Description
(\leq, \neq)	A040000	2 (for $n>1$)
(\leq, \geq)	A000027	n
(\geq, \neq)	A000124	$\binom{n}{2}+1$
(\geq, \leq)	A000045	F_{n+1} (Fibonacci)
(\neq, \leq)	A000071	$F_{n+2}-1$ (Fibonacci)
$(\underline{\geq},<) \stackrel{s s}{\sim}(\underline{<, \geq}) \sim(\underline{\neq, \geq})$	A000079	2^{n-1}
(\neq, \neq)	A000085	Number of involutions of [n]
$(\underline{\underline{\prime},>})$	A000108	C_{n} (Catalan)
(\geq, \leq)	A071356	Underdiagonal paths of from the origin to $x=n$ with steps $(0,1),(1,0),(1,2)$
$(=, \neq)$	A003422	$0!+1!+2!+\cdots+(n-1)!$
$(\geq, \geq) \stackrel{s s}{\sim}(\underline{<,<)}$	A049774	$\left\|S_{n}(\underline{321})\right\|$
$(\neq,=)$	A000522	$\sum_{i=0}^{n-1}(n-1)!/ i!$
$(\geq,>) \stackrel{s s}{\sim}(\geq, \geq)$	A200403	$\left\|S_{n}(1243)\right\|$
($=$, =	A052169	$\frac{(n+1)!-d_{n+1}}{n}$

Examples

Let $e \in \mathbf{I}_{n}$.
$e \in \mathbf{I}_{n}(\geq, \leq)$ iff there exists j such that $e_{1}<e_{2}<\cdots<e_{j} \geq e_{j+1}>e_{j+2}>\cdots>e_{n}$.

Examples

Let $e \in \mathbf{I}_{n}$.
$e \in \mathbf{I}_{n}(\geqq, \leq)$ iff there exists j such that $e_{1}<e_{2}<\cdots<e_{j} \geq e_{j+1}>e_{j+2}>\cdots>e_{n}$.
$\Longrightarrow \quad\left|\mathbf{I}_{n}(\geq, \leq)\right|=F_{n+1}$.

Examples

Let $e \in \mathbf{I}_{n}$.
$e \in \mathbf{I}_{n}(\geqq, \leq)$ iff there exists j such that $e_{1}<e_{2}<\cdots<e_{j} \geq e_{j+1}>e_{j+2}>\cdots>e_{n}$.
$\Longrightarrow \quad\left|\mathbf{I}_{n}(\geq, \leq)\right|=F_{n+1}$.

$e \in \mathbf{I}_{n}(\leq,>)$ iff $e_{1} \leq e_{2} \leq \cdots \leq e_{n}$.

Examples

Let $e \in \mathbf{I}_{n}$.
$e \in \mathbf{I}_{n}(\geqq, \leq)$ iff there exists j such that $e_{1}<e_{2}<\cdots<e_{j} \geq e_{j+1}>e_{j+2}>\cdots>e_{n}$.
$\Longrightarrow \quad\left|\mathbf{I}_{n}(\geq, \leq)\right|=F_{n+1}$.

$e \in \mathbf{I}_{n}(\underline{\leq,>})$ iff $e_{1} \leq e_{2} \leq \cdots \leq e_{n}$.
$\Longrightarrow \quad\left|\mathbf{I}_{n}(\underline{\geq}, \leq)\right|=C_{n}$.

The pattern $\mathbf{I}_{n}(>, \leq)$

$e \in \mathbf{I}_{n}(>, \leq)$ iff there exists j such that $e_{1} \leq e_{2} \leq \cdots \leq e_{j}>e_{j+1}>\cdots>e_{n}$.

The pattern $\mathbf{I}_{n}(>, \leq)$

$e \in \mathbf{I}_{n}(>, \leq)$ iff there exists j such that $e_{1} \leq e_{2} \leq \cdots \leq e_{j}>e_{j+1}>\cdots>e_{n}$.

Theorem (conjectured by Martinez-Savage, proved independently by Cao-Jin-Lin and Hossain).

$$
\sum_{n \geq 0}\left|I_{n}(\geq, \leq)\right| x^{n}=\frac{1-2 x-\sqrt{1-4 x-4 x^{2}}}{4 x^{2}}
$$

The pattern $\mathbf{I}_{n}(>, \leq)$

$e \in \mathbf{I}_{n}(>, \leq)$ iff there exists j such that $e_{1} \leq e_{2} \leq \cdots \leq e_{j}>e_{j+1}>\cdots>e_{n}$.

Theorem (conjectured by Martinez-Savage, proved independently by Cao-Jin-Lin and Hossain).

$$
\sum_{n \geq 0}\left|I_{n}(\geq, \leq)\right| x^{n}=\frac{1-2 x-\sqrt{1-4 x-4 x^{2}}}{4 x^{2}}
$$

The pattern $\mathbf{I}_{n}(>, \leq)$

$e \in \mathbf{I}_{n}(>, \leq)$ iff there exists j such that

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{j}>e_{j+1}>\cdots>e_{n}
$$

Theorem (conjectured by Martinez-Savage, proved independently by Cao-Jin-Lin and Hossain).

$$
\sum_{n \geq 0}\left|\mathbf{I}_{n}(\geq, \leq)\right| x^{n}=\frac{1-2 x-\sqrt{1-4 x-4 x^{2}}}{4 x^{2}}
$$

Using the interpretation as marked lattice paths, we also obtain:

- the distribution of the statistic $\#\{$ distinct entries in $e\}$ is symmetric on $\mathbf{I}_{n}(>, \leq)$ (conjectured by Martinez-Savage),

The pattern $\mathbf{I}_{n}(>, \leq)$

$e \in \mathbf{I}_{n}(>, \leq)$ iff there exists j such that

$$
e_{1} \leq e_{2} \leq \cdots \leq e_{j}>e_{j+1}>\cdots>e_{n}
$$

Theorem (conjectured by Martinez-Savage, proved independently by Cao-Jin-Lin and Hossain).

$$
\sum_{n \geq 0}\left|\mathbf{I}_{n}(\geq, \leq)\right| x^{n}=\frac{1-2 x-\sqrt{1-4 x-4 x^{2}}}{4 x^{2}}
$$

Using the interpretation as marked lattice paths, we also obtain:

- the distribution of the statistic $\#\{$ distinct entries in $e\}$ is symmetric on $\mathbf{I}_{n}(\geq, \leq)$ (conjectured by Martinez-Savage),
- enumeration formulas for inversion sequences satisfying other unimodality conditions.

References

Juan S．Auli and Sergi Elizalde，Consecutive patterns in inversion sequences，Discrete Math．Theor． Comput．Sci． 21 （2019），\＃6．Juan S．Auli and Sergi Elizalde，Consecutive patterns in inversion sequences II：avoiding patterns of relations，J．Integer Seq． 22 （2019），Art．19．7．5．

Andrew M．Baxter and Lara K．Pudwell，Enumeration schemes for vincular patterns，Discrete Math．， 312 （2012），1699－1712．Andrew Baxter and Mark Shattuck，Some Wilf－equivalences for vincular patterns，J．Comb．， 6 （2015），19－45．Wenqin Cao，Emma Yu Jin and Zhicong Lin，Enumeration of inversion sequences avoiding triples of relations，Discrete Appl．Math．， 260 （2019），86－97．Sylvie Corteel，Megan A．Martinez，Carla D．Savage and Michael Weselcouch，Patterns in inversion sequences I，Discrete Math．Theor．Comput．Sci．， 18 （2016）， 21 pp．

Tim Dwyer and Sergi Elizalde，Wilf equivalence relations for consecutive patterns，Adv．in Appl． Math．， 99 （2018），134－157．

Anisse Kasraoui，New Wilf－equivalence results for vincular patterns，European J．Combin．， 34 （2013），322－337．Toufik Mansour and Mark Shattuck，Pattern avoidance in inversion sequences，Pure Math．Appl． （PU．M．A．）， 25 （2015），157－176．

回 Megan A．Martinez and Carla D．Savage，Patterns in inversion sequences II：Inversion sequences avoiding triples of relations，J．Integer Seq．， 21 （2018），Art．18．2．2．

