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1 Abstract

Previous research has applied a game-theoretic model to a population’s vaccination compliance
when the population consists of subgroups with differing perceptions on vaccines (Cojocaru, Bauch,
& Johnston, 2007) (Cojocaru & Bauch, 2009). This paper further analyzes the concept of a
heterogeneous population by imposing a simplistic lattice neighborhood construction. When the
vaccine-suspicious minority is small relative to the population, only a small proportion of that group
cooperates. As the size of the minority increases, a larger percentage of the vaccine-suspicious
are forced to cooperate in order to maintain an adequate level of herd immunity. In structured
neighborhoods, vaccination rates are lower in general, as it becomes more difficult for individuals
to become infected. By isolating the vaccine-adverse from the vaccine-friendly, we observe the
minority group’s negative influence on the vaccination habits of their peers.

2 Introduction

Epidemiological models show that the existence of an immunity-granting vaccine can limit the
extent of a contagion, especially as a higher proportion of the population chooses to vaccinate.
Paradoxically, as more people become immune and disease prevalence decreases as a result, there
is less motivation for other population members to vaccinate. Instead, these free-riders choose to
rely on the collective herd immunity of their peers as protection against the disease. However,
accumulation of non-vaccinator strategy allows for a resurgence in a previously controlled disease,
as was the concern for measles in the United Kingdom in the early 2000’s (Jansen et al., 2003)
(Bauch & Earn, 2004). Previous studies have shown that under voluntary vaccination policy, the
cyclic nature of vaccination dynamics makes permanent disease eradication nigh impossible (Fu,
Rosenbloom, Wang, & Nowak, 2011) (Cojocaru & Bauch, 2009).

There are two types of risk involved in the vaccine game. The decision to vaccinate incurs a
guaranteed yet nominal cost. While deferment does not necessitate an initial expense, in the event
of an outbreak unvaccinated individuals risk infection, which involves a relatively high cost to their
physical well-being, finances, and personal time.

Not surprisingly, individuals of varying backgrounds and ideologies carry out different vacci-
nation strategies. To reflect these social dynamics, this paper relaxes a typical assumption of
vaccination models requiring a homogeneous population in favor of one that is heterogeneous with
two subgroups. We investigate how the presence of a minority opinion affects the vaccination com-
pliance of the overall population, and apply stochastic theory to cellular automaton to demonstrate
the spread of contagion in structured neighborhoods, as well as observe the effect of peer networks
on social learning.

3 The Vaccination Game

Initially, individuals form vaccination strategies based on a game-theoretic approach, with the goal
of maximizing the payoff of their actions. In this section, the consequences of each strategy are
considered and quantified to determine the optimal approach for each individual.

3.1 Assumptions

Before we move into the specifics of our game, we consider a number of assumptions that may or
may not accurately reflect realistic societal dynamics.
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1. The population is well-mixed.

Each individual has an equal probability of interacting with any and every other person in
the population. We will later remove this assumption in favor of structured neighborhoods,
but for now we assume no social groupings. Members of both the majority and minority are
dispersed evenly throughout the population.

2. The size of the population remains constant.

While we make considerations for birth and death rates in the deterministic model, we assume
for simplicity that population size does not fluctuate.

3. The vaccine grants cooperators perfect immunity against the disease.

Vaccines that exist for many “childhood contagions” such as measles or pertussis are quite
effective. After a second dose, the Measles-Mumps-Rubella (MMR) vaccine is estimated to
be 97% effective against measles, the disease we considered in the creation of this model
(“Measles Vaccination”, 2017).

4. Individuals do not alter vaccination strategies in the midst of the epidemic.

This is the least credible assumption of our model, and further research can improve on
our results by introducing a parameter α that would represent the rate at which individuals
change strategies, relative to the current state of the epidemic in the population.

3.2 Game Setup

In the vaccination game, those who vaccinate and contribute to the herd immunity of the whole
population are considered to be cooperators, and those who forgo vaccination are defectors. Let a
finite population of individuals be categorized into either a “vaccine-friendly” majority group G1 or
a “vaccine-suspicious” minority group G2. Individuals within the same group share similar beliefs
about vaccination, but these views differ between the two groups.

The anticipated vaccination cost for members of G1 is rv1, and is significantly lower than rv2, the
perceived vaccination cost of G2. Both groups share similar beliefs about the risks and consequences
of illness, π and rs. The ratio ri represents each group’s perceived cost of vaccination relative to the
cost of infection, i.e. ri = rvi

rs
. Trivially, we assume rv to be less than rs, because if a vaccination

is seen to be more costly than the disease it prevents, it is in the individuals’ best interest to never
vaccinate. Since members of G2 tend be more hostile towards vaccines, rv2 is relatively large, and
thus r1 < r2.

The proportion of the population that belongs to G1 is denoted by a.

3.3 Optimal Outcome

As each individual deliberates whether to vaccinate, she must consider the expected outcomes
associated with her decision, as visualized in Figure 1. Potential costs of vaccination include the
money or time taken to acquire the vaccine, as well as any real or perceived side effects from its
administration. If enough of the population gets vaccinated, π decreases, and a non-vaccinator is
more likely to escape the epidemic uninfected and free from cost obligation. Ultimately, such free-
riding is the optimal outcome because it results in the best payoff. However, free-riding attemptees
risk infection if not enough of their counterparts vaccinate. The costs of sickness include physical
discomfort, doctor visits, and potential morbidity, and are much higher than those of vaccination;
for this reason, contracting the illness is the least favorable outcome.
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Figure 1: The flowchart demonstrates the potential outcomes of the vaccination game. If an
individual chooses to immunize, her outcome will be a payoff of −rv. If she chooses to forgo
vaccination, her outcome will be either a contracted illness or a successful evasion of the epidemic,
will incur costs −rs and 0, respectively.

Symbolically, the expected payoffs of vaccinating (V) and not vaccinating (NV) are as follows:

E(Vi) = −rvi
E(NV) = π ×−rs + (1− π)× 0

As the two groups vary in their perceptions of rv, their expected vaccination payoffs also differ.
Thus, what passes as an ideal strategy for one group may not appear so favorable for the other.

Now we calculate the Nash Equilibrium x* of this game. In this context, the Nash Equilibrium
is an individual’s probability to choose a vaccinator strategy, in which increasing or decreasing this
probability unilaterally would lower the individual’s expected payoff. Let xi be the probability that
Gi vaccinates, and x be the proportion of the whole population that vaccinates. To find the Nash
Equilibrium, we set the expected payoffs of each strategy equal, and solve for xi (Fu et al., 2011).

−rvi = π ×−rs

Divide each side of the equality by -rs:

ri = π

From (Fu et al., 2011), we have π = 1− e−R0R(∞), where R0 is the disease’s basic reproductive
ratio. (For our disease, we choose R0 to be 18 (“Measles Vaccination”, 2017)).

Now we have
ri = 1− e−R0R(∞)
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To find the value of R(∞), we recall that at any time t, the proportion of susceptible, infected,
and recovered individuals must be equal to the proportion of the population that did not vaccinate,
and thus must fall into one of these three categories.

S(t) + I(t) +R(t) = 1− x

At t = ∞, the disease eventually reaches a state of equilibrium, and the proportion of recov-
ered individuals is equal to the proportion of unvaccinated individuals times the probability that
unvaccinated individuals become infected.

R(∞) = (1− x)π = (1− x)(1− e−R)R(∞) = (1− x)ri

We see also from (Fu et al., 2011) that R(∞) = − log(1−ri)
R0

.
We rearrange and solve for x to obtain the Nash Equilibrium:

xi
∗ = 1 +

log(1− ri)
R0ri

The Nash Equilibrium depends on an individual’s vaccination-to-sickness cost ratio and thus the
will vary between G1 and G2. We calculate x as a weighted average of the vaccination strategies of
each group. Note that x < 1 because when vaccination rates reach a critical level pcrit = 1− 1

R0
< 1,

the disease is effectively eradicated (i.e., π = 0). Without the threat of infection, individuals cease
vaccinating. Unfortunately, as x approaches pcrit, and π decreases, fewer individuals are motivated
to vaccinate. This leads x to consistently fall short of the level needed to eradicate the disease (Fu
et al., 2011) (Cojocaru & Bauch, 2009).

4 Deterministic Model

In this section, we define the methods and parameters used in the creation of our deterministic
model. We apply theory from the previous section to determine individuals’ initial vaccination
decisions, and then incorporate epidemic dynamics to observe how this alters our population’s
likelihood to vaccinate.

4.1 Initial Conditions

We set the cost of sickness for both groups to be 1. The cost of vaccination for G1 to be 1
100 , i.e.,

members of Group 1 view the disease to be 100 times as dangerous as the vaccine that prevents it.
Members of Group 2 view vaccines to be five times more dangerous than Group 1, so that rv2 = 1

20 .
We will vary the value of a to investigate the effect that the size of the minority group has on
population vaccination adherence.

4.2 SIR Model

Let the disease in question have a vaccine that is administered to children in the early stages of
their lives, such as measles, whose MMR vaccine is recommended for children aged 6-12 months
(“Measles Vaccination”, 2017). We implement a modification of the Kermack-McKendrick SIR
model to this scenario, which represents individuals as either Susceptible, Infected, or Removed
(Kermack & McKendrick, 1927). Note that in this case, individuals who are immune to the disease
due to natural recovery or immunization belong to the Removed category.
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The epidemic dynamics can be deterministically represented using a system of ordinary differ-
ential equations. The parameters β, γ, and µ represent the average rates of infection, recovery, and
generational turnover, respectively.

dS

dt
= −βSI + µ(1− x)− µS

dI

dt
= βSI − γI − µI

dR

dt
= γI + µx− µR

As disease spreads, new members enter the population according to the birth rate, and vaccinate
at a rate relative the actual disease occurrence in the population. Again, this rate differs between
those of G1 and G2, and can be modeled with first-order differential equations.

dVi
dt

= V1(1− V1)(−rvi + rsI)

Or, equivalently:

dVi
dt

= V1(1− V1)(−ri + I)

Vaccination increases if disease incidence exceeds the vaccination cost, and decreases when
infection prevalence is low. We ran this simulation at different values of a for 100 iterations. The
results are analyzed in the discussion section.

5 Stochastic Theory and Application

Our first model works under the assumption that the average infection, recovery, and birth/death
rates accurately represent the progression of individuals through each of the S, I, and R, states.
However, individual experiences with illness differ, and average rates do not account for the ran-
domness typical of biological processes. To counter this, we apply stochastic theory, which converts
the rates into probabilities that determine which events occur and the time that they occur.

5.1 Gillespie Algorithm

Here we outline the Gillespie Algorithm (Regoes & Schafroth, n.d.), and how it can be implemented
to create a stochastic model.

1. Initialization

In this stage, we determine the probabilities governing our model, the initial conditions, and
the time tfinal when we will commence the model. Rates can be converted to probabilities
using the formula 1− e−rate.

2. Determine the time for the next event.

The Gillespie Algorithm operates with the idea that we can divide our continuous time frame
into intervals so small that only one event occurs at each interval. However, we have no way
of choosing these ideal intervals that would contain exactly one event, so we pick a random
number from an exponential distribution to represent the time change between events, δt.
The time at the next event will be the current time added to δt.
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Figure 2: The figure shows two possible neighborhood constructions to a Cellular Automaton
model. For this research, we choose to utilize the Von Neumann setup.

3. Determine which event occurs.

We sum the probabilities of each event and scale the sum so that it is equal to one, and
the probability of each event corresponds to some interval between zero and one. To choose
which event will take place during the next time interval, we pick a random number from a
uniform distribution. The event interval that contains this chosen number is the one selected
to occur.

4. Repeat steps 2 and 3 until t+ δt exceeds tfinal.

As each event occurs, an individual exits one stage and enters another. The Gillespie Algorithm
can be applied to a SIR simulation and is a more accurate representation of the biological processes
relating to infection and recovery.

5.2 Application to Cellular Automaton

We apply this probabilistic approach to two-dimensional cellular automaton to visualize infection
spread among neighbors in structured networks. Cellular automaton represent a population as a
grid-like structure in which every cell represents an individual and the value associated with each
cell at time t indicates its current state (Wolfram, 1983).

There are multiple structures that can be used to represent neighborhoods in cellular automaton;
here we use the Von Neumann neighborhood (see Figure 2). This setup violates the “well-mixed”
assumption we made in regards to our deterministic model. In the present case, each individual
only has access to their neighbors. One can imagine folding the planar grid into a torus shape
so that even individuals on the “edge” of the grid interact with exactly four others. Neighbors
facilitate the spread of disease and act as role models in the vaccination decision process.

The model we present consists of two stages. In the first stage, individuals form vaccination
strategies, and in the second stage, we introduce an epidemic. After each epidemic stage, individuals
reevaluate their strategies by comparing their payoff from the previous round with the payoffs of
their neighbors. Individuals will switch to their neighbor’s strategy with probability
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1− 1

1 + e−k(fn−fm)

where fn is the payoff of the neighbor and fm is the fitness of the individual. The parameter k
is the strength of selection constant. Here, we choose k to be one, although for higher values of k,
one is more likely to switch to a neighbor’s strategy (Fu et al., 2011).

We simulate two versions of this cellular automaton problem: one where the members of G1 and
G2 are evenly and randomly dispersed, and another where the member of G2 are kept relatively
isolated from the rest of the population. The results of each simulation are discussed in the next
section.

6 Results

We ran simulations of both the deterministic and stochastic models at different values of a to observe
how the size of the vaccine-suspicious minority affected the compliance of the overall population.

As could be expected, increasing the proportion of the population belonging to G2 had a negative
effect on population vaccination rates (Figure 3). However, compliance rates of G1 tended to
increase, perhaps in an attempt to compensate for the dropping level of community immunity.
When a was larger than 0.7, individuals belonging to G2 vaccinated with a probability near zero,
choosing to rely on the vaccination protection by members of G1 instead. At smaller values of a, the
herd immunity created by G1 was not sufficient to diminish the spread of disease, and individuals of
G2 began to view the risk of infection as more costly than the vaccine, leading to higher vaccination
levels among G2.

The stochastic cellular automaton model places emphasis on the spread of biological contagion
and public opinion through a population. The first set-up assumes a starting population in which
members of the majority and minority groups are distributed randomly. The vaccination compliance
according to this model was much lower than we had observed with the deterministic model, and is
likely the result of the “negative influence” that successful free-riding has on would-be vaccinators
(Figure 4,5).

Conversely, when we separate the members of G2 from the rest of the population, we observe
much higher vaccination levels among G1. This was accomplished by segregating all G2 members
into the upper right hand corner of the cellular automaton as the initial state. Among members
of G1, there is little attempted free-riding from the first iteration of the simulation. Those who do
not vaccinate free-ride successfully, but few neighbors switch to this strategy because of both the
scarcity of the free-riders and the relatively little incentive G1 members face by choosing to not
vaccinate.

The pocket of G2 members encounter a different experience. More individuals of this group
attempt to free-ride, and occasionally do so successfully if the initial inoculum (whose position is
determined randomly) happens to be concentrated heavily among the highly vaccinated G1. When
individuals do free-ride successfully, their neighbors are very likely to switch to that strategy on
the next round, leading to a large drop in vaccination. However, this means that the subsequent
epidemic is likely to be quite severe, leading individuals to imitate those few who had stuck to a
vaccinator strategy. As a result, the vaccination rates for G2 oscillate wildly. The overall population
vaccination rate tends to be very high in comparison to the even dispersal model, although it tends
to be higher with smaller values of a (Figures 6,7).
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Figure 3: The graph shows the population vaccination rates after 100 iterations of the model and
varying values of a. While the population rates decreased with a, the compliance rates of G2

increased as the minority group took up a larger portion of the population.
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Figure 4: Vaccine compliance rates of the population and each subgroup at a = 0.90
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Figure 5: Vaccine compliance rates of the population and each subgroup at a = 0.70
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Figure 6: Vaccine compliance rates of the population and each subgroup with structured social
networks at a = 0.90
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Figure 7: Vaccine compliance rates of the population and each subgroup with structured social
networks at a = 0.70
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7 Discussion

This paper suggests the scope of influence that a vaccine-adverse minority wields, but these results
are by no means exhaustive. Other studies have examined how these results change when the
two subgroups differ in both the perceived cost of infection and expected probability of illness,
citing polls that suggest a correlation between vaccine distrust and underestimated infection risk
(Cojocaru et al., 2007) (Cojocaru & Bauch, 2009). Similarly, the practicality of our model would
be much improved if we allowed individuals to alter their vaccination strategies during an epidemic
(Fu et al., 2011). Other areas of interest include vaccines that grant imperfect immunity (Weinberg
& Szilagyi, 2010), different neighborhood structures (Fu et al., 2011), or multiple opinion groups
(Cojocaru & Bauch, 2009).

Despite any shortcomings of the simplistic models discussed in this paper, we can conclude
that the existence of a minority group such as G2 can negatively impact the vaccine compliance
of a population. These individuals are more likely to forgo vaccination, which can compromise
the herd immunity that is necessary to protect those too young to become vaccinated and those
who must forgo vaccination due to medical reasons. Furthermore, as seen in our stochastic cellular
automaton model, these people also act as negative influences on those who would otherwise be
likely to vaccinate.
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