Series

October 10, 2007

Definition of an infinite series

Given a sequence $\left\{a_{n}\right\}$, a series (or infinite series) is the addition of the terms of the sequence:

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots
$$

Definition of Sum, Convergence and Divergence

Given a series $\sum_{n=1}^{\infty} a_{n}$, let

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n}
$$

be the n-th partial sum.
If the sequence $\left\{s_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} s_{n}=$ s is a real number, then the series $\sum_{n=1}^{\infty} a_{n}$ is called convergent and we write

$$
a_{1}+a_{2}+\cdots=s \text { or } \sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. Otherwise, we call the series divergent.

The Geometric Series

The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots
$$

where a and r are constant real numbers. This series is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}
$$

If $|r| \geq 1$, the geometric series diverges.

Test for Convergence

Theorem: If a series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$

The Test for Convergence:
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$,
then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

