Volumes

September 28, 2007

Definition of Volume

Let S be a solid that lies between $x=a$ and $x=b$. If the cross-sectional area of S in the plane P_{x}, through x and perpendicular to the x-axis, is $A(x)$, where A is a continuous function, then the volume of S is

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

Solids of revolution

A solid of revolution is a solid obtained by rotating (or revolving) an area around a line.

Cross-sectional areas of solids of revolution

The cross-sectional area $A(x)$ and $A(y)$ can be found in two ways:

- If the cross-section is a disk we use

$$
A=\pi(\text { radius })^{2}
$$

- If the cross-section is a washer we use

$$
A=\pi(\text { outer radius })^{2}-\pi(\text { inner radius })^{2}
$$

