Vector-Valued Functions

Nov. 5, 2007

Vector-valued functions

Let *I* be a subset of **R**. Then a **vectorvalued function** is a rule **r** that assigns to every real number *t* in *I* a unique vector in \mathbb{R}^n .

$$\mathbf{r}(t) = \langle x_1(t), x_2(t), \dots, x_n(t) \rangle$$

For example, for n = 3:

$$\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$$

NOTE: Domain is a subset of real numbers and range is \mathbb{R}^3 .

Limits and continuity of vector-valued functions

If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$, then $\lim_{t \to a} \mathbf{r}(t) = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle$ provided the limit of the component functions exist.

Definition: A vector-valued function \mathbf{r} is **continuous at** a if

$$\lim_{t \to a} \mathbf{r}(t) = \mathbf{r}(a)$$

2

Definition of Derivative

The derivative \mathbf{r}' is defined by

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

The vector $\mathbf{r}'(t)$ is called the **tangent vector** to the curve defined by \mathbf{r} .

Computing the derivative

Theorem: If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \rangle$, where f, g and h are differentiable functions, then

$$\mathbf{r}'(t) = \langle f'(t), g'(t), h'(t) \rangle$$

Differentiation Rules

Theorem: Suppose that \mathbf{r} and \mathbf{s} are differentiable vector functions, c a scalar, and f a real-valued function.

1.
$$\frac{d}{dt}[\mathbf{r}(t) + \mathbf{s}(t)] = \mathbf{r}'(t) + \mathbf{s}'(t)$$

2.
$$\frac{d}{dt}[c\mathbf{r}(t)] = c \mathbf{r}'(t)$$

3.
$$\frac{d}{dt}[f(t)\mathbf{r}(t)] = f'(t)\mathbf{r}(t) + f(t)\mathbf{r}'(t)$$

4.
$$\frac{d}{dt}[\mathbf{r}(t) \cdot \mathbf{s}(t)] = \mathbf{r}'(t) \cdot \mathbf{s}(t) + \mathbf{r}(t) \cdot \mathbf{s}'(t)$$

5.
$$\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{s}(t)] = \mathbf{r}'(t) \times \mathbf{s}(t) + \mathbf{r}(t) \times \mathbf{s}'(t)$$

6.
$$\frac{d}{dt}[\mathbf{r}(f(t))] = f'(t)\mathbf{r}'(f(t))$$

Definite Integrals

The **definite integral** of a continuous vector function $\mathbf{r}(t)$ can be computed using

$$\int_{a}^{b} \mathbf{r}(t) dt = \left\langle \int_{a}^{b} f(t) dt, \int_{a}^{b} g(t) dt, \int_{a}^{b} h(t) dt \right\rangle$$

Definition of a path

Let I = [a, b] be a closed interval for some numbers a < b. $I \subseteq \mathbb{R}$.

Definition: A path in \mathbb{R}^n is a continuous function $\mathbf{r} : I \to \mathbb{R}^n$ where $\mathbf{r}(a)$ and $\mathbf{r}(b)$ are the **endpoints** of the path \mathbf{r} .

Velocity, speed and acceleration

Let $\mathbf{r}: I \to \mathbb{R}^n$ be a differentiable path. Then

- The velocity $\mathbf{v}(t) = \mathbf{r}'(t)$.
- The speed is $||\mathbf{v}(t)||$.
- The acceleration is a(t) = v'(t) = r''(t).

The tangent line

Let $\mathbf{r} : I \to \mathbb{R}^n$ be a path and $\mathbf{v}(t_0) \neq \mathbf{0}$. Then the parametric equation of the tangent line at t_0 to the path \mathbf{r} is

$$\mathbf{l}(t) = \mathbf{r}(t_0) + (t - t_0)\mathbf{v}_0.$$

Length of a path

Definition: The length $L(\mathbf{r})$ of a differentiable path $\mathbf{r} : [a, b] \to \mathbb{R}^n$ is the integral of its speed

$$L(\mathbf{r}) = \int_a^b \|\mathbf{r}'(t)\| dt$$