Vector-Valued Functions

Nov. 5, 2007

Vector-valued functions

Let I be a subset of \mathbf{R}. Then a vectorvalued function is a rule r that assigns to every real number t in I a unique vector in \mathbb{R}^{n}.

$$
\mathbf{r}(t)=\left\langle x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right\rangle
$$

For example, for $n=3$:

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

NOTE: Domain is a subset of real numbers and range is \mathbb{R}^{3}.

Limits and continuity of vector-valued functions

If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle
$$

provided the limit of the component functions exist.

Definition: A vector-valued function r is continuous at a if

$$
\lim _{t \rightarrow a} \mathrm{r}(t)=\mathrm{r}(a)
$$

Definition of Derivative

The derivative \mathbf{r}^{\prime} is defined by

$$
\frac{d \mathbf{r}}{d t}=\mathbf{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{r}(t+h)-\mathbf{r}(t)}{h}
$$

The vector $\mathbf{r}^{\prime}(t)$ is called the tangent vector to the curve defined by \mathbf{r}.

Computing the derivative

Theorem: If $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle\rangle$, where f, g and h are differentiable functions, then

$$
\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle
$$

Differentiation Rules

Theorem: Suppose that \mathbf{r} and s are differentiable vector functions, c a scalar, and f a real-valued function.

1. $\frac{d}{d t}[\mathbf{r}(t)+\mathbf{s}(t)]=\mathbf{r}^{\prime}(t)+\mathbf{s}^{\prime}(t)$
2. $\frac{d}{d t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t)$
3. $\frac{d}{d t}[f(t) \mathbf{r}(t)]=f^{\prime}(t) \mathbf{r}(t)+f(t) \mathbf{r}^{\prime}(t)$
4. $\frac{d}{d t}[\mathbf{r}(t) \cdot \mathbf{s}(t)]=\mathbf{r}^{\prime}(t) \cdot \mathbf{s}(t)+\mathbf{r}(t) \cdot \mathbf{s}^{\prime}(t)$
5. $\frac{d}{d t}[\mathbf{r}(t) \times \mathbf{s}(t)]=\mathbf{r}^{\prime}(t) \times \mathbf{s}(t)+\mathbf{r}(t) \times \mathbf{s}^{\prime}(t)$
6. $\frac{d}{d t}[\mathbf{r}(f(t))]=f^{\prime}(t) \mathbf{r}^{\prime}(f(t))$

Definite Integrals

The definite integral of a continuous vector function $\mathbf{r}(t)$ can be computed using

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle
$$

Definition of a path

Let $I=[a, b]$ be a closed interval for some numbers $a<b . I \subseteq \mathbb{R}$.

Definition: A path in \mathbb{R}^{n} is a continuous function $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ where $\mathbf{r}(a)$ and $\mathbf{r}(b)$ are the endpoints of the path r.

Velocity, speed and acceleration

Let $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ be a differentiable path. Then

- The velocity $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$.
- The speed is $\|\mathbf{v}(t)\|$.
- The acceleration is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

The tangent line

Let $\mathbf{r}: I \rightarrow \mathbb{R}^{n}$ be a path and $\mathbf{v}\left(t_{0}\right) \neq \mathbf{0}$. Then the parametric equation of the tangent line at t_{0} to the path \mathbf{r} is

$$
\mathbf{l}(t)=\mathbf{r}\left(t_{0}\right)+\left(t-t_{0}\right) \mathbf{v}_{0}
$$

Length of a path

Definition: The length $L(\mathbf{r})$ of a differentiable path $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{n}$ is the integral of its speed

$$
L(\mathbf{r})=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

