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Coefficients of a power series

Theorem: If f has a power series repre-
sentation (expansion) at a, that is, if
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Taylor Series of a function about «

Suppose f is a function that can be repre-
sented by a power series, then
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Maclaurin Series

Maclaurin series are the Taylor series about
a=20
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The Remainder and the Taylor polynomials 7;,

The Taylor polynomial
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Let Rp(x) = f(x) — Tn(x)

Theorem: If f(x) =Th(z) + Rn(x) and
lim_Rp(x) =0
for |t —a| < R, then f is equal to the sum of

its Taylor series on the interval |x — a| < R.
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Taylor’s Inequality

If |t (2)| < M for |z — a| < d, then the
remainder R, (x) of the Taylor series satisfies
the inequality
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