Taylor and Maclaurin Series

October 24, 2007

Coefficients of a power series

Theorem: If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \quad|x-a|<R
$$

then its coefficient are given by the formula

$$
c_{n}=\frac{f^{(n)}(a)}{n!} .
$$

Taylor Series of a function about a

Suppose f is a function that can be represented by a power series, then

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots
\end{aligned}
$$

Maclaurin Series

Maclaurin series are the Taylor series about $a=0$

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2} \frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
\end{aligned}
$$

The Remainder and the Taylor polynomials T_{n}

The Taylor polynomial

$$
T_{n}(x)=\sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!}(x-a)^{i}
$$

Let $R_{n}(x)=f(x)-T_{n}(x)$

Theorem: If $f(x)=T_{n}(x)+R_{n}(x)$ and

$$
\lim _{n \rightarrow \infty} R_{n}(x)=0
$$

for $|x-a|<R$, then f is equal to the sum of its Taylor series on the interval $|x-a|<R$.

Taylor's Inequality

If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$, then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\begin{gathered}
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad|x-a| \leq d \\
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0 \quad \text { for every real number } x
\end{gathered}
$$

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \quad R=1 \\
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad R=\infty \\
\sin (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad R=\infty \\
\cos (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad R=\infty \\
\tan ^{-1}(x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad R=1 \\
(1+x)^{k}=f(x) & =\sum_{n=0}^{\infty}\binom{k}{n} x^{n} \quad R=1
\end{aligned}
$$

