The Integral Test

October 15, 2007

The Integral Test

Suppose

(1) f is a continuous, positive, decreasing function on $[1,\infty)$ and

(2) let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent

if and only if

the improper integral $\int_1^\infty f(x) \, dx$ is convergent.

1

Integral Test and Divergence/Convergence of series

Assume conditions (1) and (2) of Integral Test.

- If $\int_1^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- If $\int_1^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

The *p*-series

Definition: Let p be a real number. Then the infinite series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called the p-series.

Theorem: The *p*-series is convergent if p > 1 and divergent if $p \le 1$.

Remainder Estimate for the Integral Test

The **remainder**, R_n , is defined by

$$R_n = s - s_n = a_{n+1} + a_{n+2} + a_{n+3} + \cdots$$

Remainder Estimate:

Suppose $f(k) = a_k$, where f is continuous, positive and decreasing function for $x \ge n$ and $\sum a_n$ is convergent.

If $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx$$

Estimate for the sum of a series

Let s be the sum of a series and s_n be the n-th partial sum: If we can use the integral test to test for convergence, then

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s \le s_n + \int_n^{\infty} f(x) \, dx$$