Mathematics 8

Problems for Exam 1
The following problems were considered for the exam, but ultimately not included. This document is not indicative of the length or the distribution of problems on the actual exam.

1. A particle moving along the x-axis has position $x=0$ at time $t=0$, and at time t has velocity $v(t)=\frac{1}{\sqrt{1+t^{2}}}$.
(a) Find the position of the particle at time t, for $t \geq 0$.

Solution:

$$
\int_{0}^{t} v(u) d u=\int_{0}^{t} \frac{1}{\sqrt{u^{2}+1}} d u
$$

Use a trigonometric substitution with $u=\tan \theta, d u=\sec ^{2} \theta d \theta, 0 \leq \theta<\frac{\pi}{2}$. Note that in this range $\sec \theta$ is positive, so $\sqrt{u^{2}+1}=\sqrt{\tan ^{2} \theta+1}=\sqrt{\sec ^{2} \theta}=\sec \theta$.

$$
\begin{gathered}
\int \frac{1}{\sqrt{u^{2}+1}} d u=\int \frac{1}{\sqrt{\sec ^{2} \theta}} \sec ^{2} \theta d \theta=\int \sec \theta d \theta= \\
\ln (\sec \theta+\tan \theta)+C=\ln \left(\sqrt{1+u^{2}}+u\right)+C \\
\int_{0}^{t} \frac{1}{\sqrt{u^{2}+1}} d u=\ln \left(\sqrt{1+t^{2}}+t\right)-\ln \left(\sqrt{1+0^{2}}+0\right)=\ln \left(\sqrt{1+t^{2}}+t\right)
\end{gathered}
$$

(b) Find the average acceleration of the particle between times $t=0$ and $t=10$.

Solution: The acceleration at time t is $v^{\prime}(t)$, so the average acceleration between $t=0$ and $t=10$ is

$$
\frac{1}{10-0} \int_{0}^{10} v^{\prime}(t) d t=\frac{1}{10}(v(10)-v(0))=\frac{1}{10}\left(\frac{1}{\sqrt{101}}-1\right)
$$

2. Find the volume of the solid obtained by rotating the area under the curve $y=\sin x$, for $0 \leq x \leq \pi$, about the x-axis.

Solution: The cross-sectional area at x is the area of a circle with radius $\sin x$, or $A(x)=\pi \sin ^{2} x$. Therefore the volume is

$$
\int_{0}^{\pi} \pi \sin ^{2} x d x
$$

Using the half-angle formulas,

$$
\int_{0}^{\pi} \pi \sin ^{2} x d x=\pi \int_{0}^{\pi} \frac{1-\cos 2 x}{2} d x=\left.\pi\left(\frac{x}{2}-\frac{\sin 2 x}{4}\right)\right|_{0} ^{\pi}=\frac{\pi^{2}}{2}
$$

3. Evaluate the following integrals
(a) $\int_{0}^{\infty} e^{-x} \sin x d x$

Solution: First evaluate the indefinite integral $\int e^{-x} \sin x d x$ using two applications of integration by parts:

$$
\begin{array}{rlrl}
u & =e^{-x} & d v & =\sin x d x \\
d u & =-e^{-x} d x & v & =-\cos x
\end{array}
$$

Then

$$
\int e^{-x} \sin x d x=-e^{-x} \cos x-\int e^{-x} \cos x d x
$$

The second integration by parts:

$$
\begin{array}{rlrl}
u & =e^{-x} & d v & =\cos x d x \\
d u & =-e^{-x} d x & v & =\sin x
\end{array}
$$

Then

$$
\begin{aligned}
\int e^{-x} \sin x d x & =-e^{-x} \cos x-\left(e^{-x} \sin x+\int e^{-x} \sin x d x\right) \\
& =-e^{-x} \cos x-e^{-x} \sin x-\int e^{-x} \sin x d x
\end{aligned}
$$

The integral on each side of the equation is the same so we can add it to both sides

$$
2 \int e^{-x} \sin x d x=-e^{-x}(\cos x+\sin x)
$$

The final indefinite integral is

$$
\int e^{-x} \sin x d x=\frac{-e^{-x}}{2}(\cos x+\sin x)+C
$$

Now we can use the definition of improper integral to get the final answer

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} \sin x d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} e^{-x} \sin x d x \\
& =\lim _{t \rightarrow \infty}\left[\frac{-e^{-x}}{2}(\cos x+\sin x)\right]_{0}^{t} \\
& =\lim _{t \rightarrow \infty}\left[\frac{-e^{-t}}{2}(\cos t+\sin t)-\frac{-1}{2}\right]
\end{aligned}
$$

Finally to evaluate the limit we can use the squeeze theorem. Let $f(t)=-1 / e^{t}$, $g(t)=(\cos t) / e^{t}$ and $h(t)=1 / e^{t}$. Then $\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty} h(t)=0$ and $f(t) \leq g(t) \leq h(t)$ for $t \geq 0$. So by the squeeze theorem (cf. section 1.6 in Stewart) we can conclude that $\lim _{t \rightarrow \infty} g(t)=0$. Exactly the same reasoning allows use to conclude that $\lim _{t \rightarrow \infty}(\sin t) / e^{t}=0$. Hence the limit above becomes

$$
\begin{aligned}
\int_{0}^{\infty} e^{-x} \sin x d x & =\lim _{t \rightarrow \infty}\left[\frac{-e^{-t}}{2}(\cos t+\sin t)-\frac{-1}{2}\right] \\
& =\frac{-1}{2}\left(\lim _{t \rightarrow \infty} \frac{\cos t}{e^{t}}+\lim _{t \rightarrow \infty} \frac{\sin t}{e^{t}}\right)+\frac{1}{2} \\
& =\frac{-1}{2}(0+0)+\frac{1}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

(b) $\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}$

Solution: Use trigonometric substitution with $x=3 \tan \theta$. Then $d x=3 \sec ^{2} \theta d \theta$ and the lower and upper bounds of the integration become 0 and $\tan ^{-1}(4 / 3)$ respectively.

$$
\begin{aligned}
\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}} & =\int_{0}^{\tan ^{-1}(4 / 3)} \frac{3 \sec ^{2} \theta}{\left(9+9 \tan ^{2} \theta\right)^{3 / 2}} \\
& =\int_{0}^{\tan ^{-1}(4 / 3)} \frac{3 \sec ^{2} \theta}{9^{3 / 2}(\sec \theta)^{3}} d \theta \\
& =\frac{3}{27} \int_{0}^{\tan ^{-1}(4 / 3)} \frac{d \theta}{\sec \theta} \\
& =\frac{1}{9} \int_{0}^{\tan ^{-1}(4 / 3)} \cos \theta d \theta \\
& =\frac{1}{9}[\sin \theta]_{0}^{\tan ^{-1}(4 / 3)} \\
& =\frac{1}{9}\left[\sin \left(\tan ^{-1}(4 / 3)\right)-\sin (0)\right]
\end{aligned}
$$

If the sides of a right triangle have length 3 and 4 , then the hypotenuse has length $\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$. So the first term in brackets becomes $4 / 5$ and the integral evaluates to

$$
\int_{0}^{4} \frac{d x}{\left(9+x^{2}\right)^{3 / 2}}=\frac{1}{9}\left[\frac{4}{5}-0\right]=\frac{4}{45}
$$

(c) $\int_{0}^{\sqrt{5}} \frac{x^{3}}{\sqrt{x^{2}+4}} d x$

Solution: Use trigonometric substitution with $x=2 \tan \theta$. Then $d x=2 \sec ^{2} \theta d \theta$ and the lower and upper bounds of integration become 0 and $\tan ^{-1}(\sqrt{5} / 2)$ respectively. Substituting into the integral

$$
\begin{aligned}
\int_{0}^{\sqrt{5}} \frac{x^{3}}{\sqrt{x^{2}+4}} d x & =\int_{0}^{\tan ^{-1}(\sqrt{5} / 2)} \frac{8 \tan ^{3} \theta 2 \sec ^{2} \theta}{\sqrt{4 \tan ^{2} \theta+4}} d \theta \\
& =\int_{0}^{\tan ^{-1}(\sqrt{5} / 2)} \frac{8 \tan ^{3} \theta 2 \sec ^{2} \theta}{2 \sqrt{\sec ^{2} \theta}} d \theta \\
& =8 \int_{0}^{\tan ^{-1}(\sqrt{5} / 2)} \tan ^{3} \theta \sec \theta d \theta \\
& =8 \int_{0}^{\tan ^{-1}(\sqrt{5} / 2)} \tan ^{2} \theta(\sec \theta \tan \theta) d \theta \\
& =8 \int_{0}^{\tan ^{-1}(\sqrt{5} / 2)}\left(\sec ^{2} \theta-1\right)(\sec \theta \tan \theta) d \theta
\end{aligned}
$$

Now we can use a u substitution with $u=\sec \theta$. Then $d u=\sec \theta \tan \theta d \theta$ and the lower and upper bounds of integration become 1 and $3 / 2$ respectively. So

$$
\begin{aligned}
\int_{0}^{\sqrt{5}} \frac{x^{3}}{\sqrt{x^{2}+4}} d x & =8 \int_{1}^{3 / 2}\left(u^{2}-1\right) d u \\
& =8\left[\frac{u^{3}}{3}-u\right]_{1}^{3 / 2} \\
& =8\left[\frac{1}{3} \cdot \frac{27}{8}-\frac{3}{2}-\left(\frac{1}{3}-1\right)\right]=8 \frac{7}{24}=\frac{7}{3}
\end{aligned}
$$

Note that you could also have used integration by parts with $u=x^{2}$ and $d v=$ $\left(x / \sqrt{x^{2}+4}\right) d x$.
4. Determine whether the following converge or diverge. Be sure to explain your reasoning.
(a) $\sum_{n=1}^{\infty} \frac{\ln n-3}{n}$.

Solution: We can use the comparison test here. For $n>e^{4}$, we have $\ln n>4$, $\ln n-3>1$, and $\frac{\ln n-3}{n}>\frac{1}{n}$. Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges (we know this because it is a p series with $p \geq 1$), by the comparison test this series also diverges.
(b) $\sum_{n=2}^{\infty} \frac{\ln (n)}{\ln \left(n^{2}\right)}$

Solution: Checking the divergence test the limit of the sequence of terms is

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{\ln \left(n^{2}\right)}=\lim _{n \rightarrow \infty} \frac{\ln (n)}{2 \ln (n)}=\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
$$

Since the limit is not zero, the divergence test allows us to conclude that the series diverges.
(c) $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$

Solution: A quick check shows that the sequence of the terms converges to zero, so the divergence test does not apply. Near $x=0$ the function $\ln (1+x)$ behaves roughly like x (check the slope of the tangent line at $x=0$ to confirm this). So the composition $\ln (1+1 / n)$ behaves roughly like $1 / n$ as $n \rightarrow \infty$. This suggests that we should compare this series to the harmonic series $\sum b_{n}=\sum 1 / n$. Let $a_{n}=\ln (1+1 / n)$ and $f(x)=\ln (1+1 / x)$ and $g(x)=1 / x$. Then f and g are continuous on $[1, \infty)$. Since the f and g converge to zero as $x \rightarrow \infty$ and the derivative of g is not zero on $[1, \infty)$, we can use l'Hôpital's rule to conclude

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\ln (1+1 / n)}{1 / n}=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\ln (1+1 / x)}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+1 / x}\right)\left(-1 / x^{2}\right)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{1+1 / x}=1
\end{aligned}
$$

Since both a_{n} and b_{n} are positive for all n and their ratio converges to a positive number, the limit comparison test allows us to conclude that both series either diverge or converge together. Since the harmonic series diverges, the given series $\sum \ln (1+1 / x)$ also diverges.
5. Evaluate the following. (Your answer should be a number, $+\infty,-\infty$, or "diverges" if it diverges but not to $+\infty$ or $-\infty$.) Be sure to explain your reasoning.
(a) $\lim _{n \rightarrow \infty} \frac{\ln \left(n^{3}+5\right)}{n}$

Solution: $\lim _{n \rightarrow \infty} \frac{\ln \left(n^{3}+5\right)}{n}=\lim _{x \rightarrow \infty} \frac{\ln \left(x^{3}+5\right)}{x}$ (assuming this limit exists), which we can evaluate using l'Hospital's Rule:

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{3}+5\right)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{3 x^{2}}{x^{3}+5}}{1}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{3}+5}=\lim _{x \rightarrow \infty} \frac{6 x}{3 x^{2}}=\lim _{x \rightarrow \infty} \frac{6}{6 x}=0
$$

(b) $\lim _{n \rightarrow \infty} \frac{n \ln (n)}{n^{2}+5}$

Solution: Let $a_{n}=n \ln (n) /\left(n^{2}+5\right)$ and let function $f(x)=x \ln (x) /\left(x^{2}+5\right)$. The function f is continuous on $[1, \infty)$ and $a_{n}=f(n)$, so

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

Since both the numerator and denominator of $f(x)$ diverge to infinity and the derivative of the denominator is not zero on $[1, \infty)$, we can use l'Hôpital's rule

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\ln (x)+x(1 / x)}{2 x}=\lim _{x \rightarrow \infty} \frac{\ln (x)+1}{2 x}
$$

Again we are in a situation where we can apply l'Hôpital's rule and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} \frac{\ln (x)+1}{2 x}=\lim _{x \rightarrow \infty} \frac{1 / x}{2}=\lim _{x \rightarrow \infty} \frac{1}{2 x}=0
$$

(c) $\lim _{n \rightarrow \infty} n^{2}(\cos (1 / n)-1)$

Solution: Note that the first factor n^{2} diverges to infinity, while the second factor in parentheses converges to zero. This indicates that we might be able to use l'Hôpital's rule after rewriting it as a fraction as follows. Let

$$
a_{n}=n^{2}(\cos (1 / n)-1)=\frac{\cos (1 / n)-1}{1 / n^{2}}
$$

Let $f(x)=x^{2}(\cos (1 / x)-1)$. Then f is continuous on $[1, \infty)$ and checking that the derivative of the denominators is not zero, we can apply l'Hôpital's rule twice to get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} & =\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{\cos (1 / x)-1}{1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)\left(-1 / x^{2}\right)}{-2 / x^{3}} \\
& =\lim _{x \rightarrow \infty} \frac{-\sin (1 / x)}{2 / x}=\lim _{x \rightarrow \infty} \frac{-\cos (1 / x)\left(-1 / x^{2}\right)}{-2 / x^{2}}=\lim _{x \rightarrow \infty} \frac{-1}{2} \cos (1 / x)=\frac{-1}{2}
\end{aligned}
$$

6. Let $a_{n}=\frac{1}{(n+3)^{3}}$.

Assume you want to use the partial sum $s_{c}=\sum_{n=1}^{c} a_{n}$ to approximate the value of $\sum_{n=1}^{\infty} a_{n}$. To guarantee an error of at most $\frac{8}{10^{6}}$, how large must c be?
Solution: Since $f(x)=\frac{1}{(x+3)^{3}}$ is continuous and decreasing for $x \geq 0$, we can use the error estimate from the integral test. The remainder, or error, term is

$$
\begin{gathered}
R_{c}=\sum_{n=c+1}^{\infty} \frac{1}{(n+3)^{3}} \leq \int_{c}^{\infty} \frac{1}{(x+3)^{3}} d x=\lim _{b \rightarrow \infty} \int_{c}^{b} \frac{1}{(x+3)^{3}} d x= \\
=\lim _{b \rightarrow \infty}\left(\frac{-1}{2(b+3)^{2}}-\frac{-1}{2(c+3)^{2}}\right)=\frac{1}{2(c+3)^{2}} .
\end{gathered}
$$

We want

$$
\frac{1}{2(c+3)^{2}} \leq \frac{8}{10^{6}} \quad \frac{1}{(c+3)} \leq \frac{4}{10^{3}} \quad(c+3) \geq \frac{10^{3}}{4} \quad c \geq 247 .
$$

