1 Determine which of the following series diverge, converge conditionally, and converge absolutely. Mention all tests you use. Remember that to show that a series converges *conditionally*, you show that $\sum a_n$ converges and also that $\sum |a_n|$ diverges (i.e., that the series does not converge absolutely).

2 Find the first two nonzero terms in the Maclaurin series for $f(x) = \tan x$.

3 Find the Maclaurin series for $f(x) = x \arctan(3x^3)$.

4 Find the interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{(-5)^{n+2}(x-1)^n}{n^2}.$

5 Evaluate the following integrals.

c.
$$\int \frac{1}{x^2 \sqrt{x^2 + 9}} dx$$

d.
$$\int_0^{\frac{1}{\sqrt{2}}} \frac{x^2}{\sqrt{1 - x^2}} dx$$

e.
$$\int e^{3x} \cos x \, dx$$

f.
$$\int x \ln x \, dx$$

6 Find the point in which the line x = 2 - t, y = 1 + 3t, z = 4t intersects the plane 2x - y + z = 2.

7 Determine whether the planes given by x + 4y - 3z = 1 and -3x + 6y + 7z = 3 are parallel, perpendicular, or neither. If neither, find the angle between them.

8 Determine whether the planes given by 3x + 6z = 1 and 2x + 2y - z = 3 are parallel, perpendicular, or neither. If neither, find the angle between them.

Math 8 Winter 2009 — Final Exam Review Problems

9 Find an equation of the plane which contains the x-axis as well as the line given by the parametric equations x = t, y = 2t, z = 3t.

10 Find an equation of the plane which contains the origin and the line x = 6t + 2, y = 2 - 4t, z = 9.

11 Find the arc length of the curve $\mathbf{r}(t) = \cos^3 t \mathbf{j} + \sin^3 t \mathbf{k}$ from t = 0 to t = 1.

12 Suppose the gradient of f(x, y, z) is

$$\nabla f = \langle 2xyz + 2e^z, x^2z - \cos y, x^2y + 2e^z \rangle,$$

and that $x = s^2 t$, $y = t^3$, and $z = e^s$. What is $\frac{\partial f}{\partial s}$? You need not simplify your answer, but it should not contain ∂ symbols.

- 13 Consider the function $f(x, y) = x^3 + y^2 xy$. At the point (1, 1), in what direction(s) is the rate of change of f equal to zero? Give your answer as one or more unit vectors.
- 14 Find the rate of change of the function $f(x, y) = \sqrt{24 x^2 y^2}$ at the point (4, -2) in the direction given by $\theta = \pi/6$. In what direction does f attain its maximum rate of change at the point (4, -2)? (You need not specify this direction by an angle.)
- 15 Let $f(x, y, z) = ye^{-x^2} \sin z$. Find the equation of the tangent plane to the level syrface of f at the point $(0, 1, \pi/3)$.
- 16 A ball is placed at the point (1, 2, 3) on the surface $z = y^2 x^2$. Give the direction in the xy-plane that the ball will start to roll.

17 Find and classify all critical points of the function $f(x,y) = 3x - x^3 - 3xy^2$.

18 Find and classify all critical points of the function $f(x, y) = x^3 + y^4$.

- **a.** Compute f_x , f_y , f_{xx} , f_{xy} , and f_{yy} .
- **b.** What are the critical points of f?
- c. Classify the critical points of f.
- **d.** Find the absolute maximum and minimum of f on the region given by $-1 \le x \le 1$ and $-\pi/2 \le y \le \pi/2$.

20 Find the maximum and minimum of $f(x, y) = x^2 + 2x + y^2$ on the disk $x^2 + y^2 \le 4$.

¹⁹ Let $f(x, y) = x \sin y$.