1 Determine which of the following series diverge, converge conditionally, and converge absolutely. Mention all tests you use. Remember that to show that a series converges conditionally, you show that $\sum a_{n}$ converges and also that $\sum\left|a_{n}\right|$ diverges (i.e., that the series does not converge absolutely).
a. $\sum_{n=1}^{\infty} \frac{n}{n+1}$
b. $\sum_{n=1}^{\infty} 10^{10}\left(\frac{2}{3}\right)^{n}$
c. $\sum_{n=1}^{\infty} \frac{2^{n}}{(2 n+1)!}$
d. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{4}}{e^{n}}$
e. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{10}+2 n-1}}{\sqrt{n^{9}+2 n^{2}}}$
f. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+7}}$
g. $\sum_{n=2}^{\infty} \frac{1}{n \ln n(\ln \ln n)}$
h. $\sum_{n=2} \frac{1}{n^{\ln \ln n}}$
i. $\sum_{n=2} \frac{1}{(\ln n)^{\ln n}}$
j. $\sum_{n=1}^{\infty} \frac{\cos n^{4}+\sin n^{5}}{n^{9}}$
k. $\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n^{3}+2 n+1\right)}{\sqrt{n^{7}-2 n+10}}$

1. $\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{n}$

2 Find the first two nonzero terms in the Maclaurin series for $f(x)=\tan x$.

3 Find the Maclaurin series for $f(x)=x \arctan \left(3 x^{3}\right)$.

4 Find the interval of convergence for the power series $\sum_{n=0}^{\infty} \frac{(-5)^{n+2}(x-1)^{n}}{n^{2}}$.

5 Evaluate the following integrals.
c. $\int \frac{1}{x^{2} \sqrt{x^{2}+9}} d x$
d. $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$
e. $\int e^{3 x} \cos x d x$
f. $\int x \ln x d x$

6 Find the point in which the line $x=2-t, y=1+3 t, z=4 t$ intersects the plane $2 x-y+z=2$.

7 Determine whether the planes given by $x+4 y-3 z=1$ and $-3 x+6 y+7 z=3$ are parallel, perpendicular, or neither. If neither, find the angle between them.

8 Determine whether the planes given by $3 x+6 z=1$ and $2 x+2 y-z=3$ are parallel, perpendicular, or neither. If neither, find the angle between them.

Math 8 Winter 2009 - Final Exam Review Problems
9 Find an equation of the plane which contains the x-axis as well as the line given by the parametric equations $x=t, y=2 t, z=3 t$.

10 Find an equation of the plane which contains the origin and the line $x=6 t+2$, $y=2-4 t, z=9$.

11 Find the arc length of the curve $\mathbf{r}(t)=\cos ^{3} t \mathbf{j}+\sin ^{3} t \mathbf{k}$ from $t=0$ to $t=1$.

12 Suppose the gradient of $f(x, y, z)$ is

$$
\nabla f=\left\langle 2 x y z+2 e^{z}, x^{2} z-\cos y, x^{2} y+2 e^{z}\right\rangle,
$$

and that $x=s^{2} t, y=t^{3}$, and $z=e^{s}$. What is $\frac{\partial f}{\partial s}$? You need not simplify your answer, but it should not contain ∂ symbols.

13 Consider the function $f(x, y)=x^{3}+y^{2}-x y$. At the point $(1,1)$, in what direction(s) is the rate of change of f equal to zero? Give your answer as one or more unit vectors.

14 Find the rate of change of the function $f(x, y)=\sqrt{24-x^{2}-y^{2}}$ at the point $(4,-2)$ in the direction given by $\theta=\pi / 6$. In what direction does f attain its maximum rate of change at the point $(4,-2)$? (You need not specify this direction by an angle.)

15 Let $f(x, y, z)=y e^{-x^{2}} \sin z$. Find the equation of the tangent plane to the level syrface of f at the point $(0,1, \pi / 3)$.

16 A ball is placed at the point $(1,2,3)$ on the surface $z=y^{2}-x^{2}$. Give the direction in the $x y$-plane that the ball will start to roll.

17 Find and classify all critical points of the function $f(x, y)=3 x-x^{3}-3 x y^{2}$.

18 Find and classify all critical points of the function $f(x, y)=x^{3}+y^{4}$.
19 Let $f(x, y)=x \sin y$.
a. Compute $f_{x}, f_{y}, f_{x x}, f_{x y}$, and $f_{y y}$.
b. What are the critical points of f ?
c. Classify the critical points of f.
d. Find the absolute maximum and minimum of f on the region given by $-1 \leq x \leq 1$ and $-\pi / 2 \leq y \leq \pi / 2$.

20 Find the maximum and minimum of $f(x, y)=x^{2}+2 x+y^{2}$ on the disk $x^{2}+y^{2} \leq 4$.

