Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics 2/7/05

With Acroread, CTRL-L switch between full screen and window mode

What about a function like

$$f(x) = \sin(x)$$

Idea:

- Goal: a power series representation about a
- The m^{th} partial sum of a series

$$\sum_{n=0}^{\infty} c_n (x-a)^n$$

is a polynomial of degree m:

$$s_m = c_0 + c_1(x - a) + c_2(x - a)^2 + \dots + c_m(x - a)^m$$

• Find polynomials that closely match the function, f(x), near x = a.

m = 0

 $s_0 = c_0$ so simply pick $c_0 = f(a)$.

m=1

$$s_1 = c_0 + c_1(x - a) = f(a) + c_1(x - a)$$

Find c_1 so that $f(x) - (f(a) + c_1(x - a))$ is as small as possible near x = a:

$$f(x) - (f(a) + c_1(x - a)) = (f(x) - f(a)) + c_1(x - a)$$

Dividing by (x - a) gives:

$$\frac{(f(x) - f(a))}{x - a} + c_1 \sim f'(a) + c_1$$

when x is close to a. So pick $c_1 = f'(a)$.

Version 1.0 Scott Pauls

Using these values, what is $s_1 = f(a) + f'(a)(x-a)$?

m=1 geometrically

Using these values, what is $s_1 = f(a) + f'(a)(x-a)$?

It is just the tangent line to f at x = a!

2/7/05 Version 1.0 Scott Pauls If we continue this process, each time we add a term containing higher derivatives of f at x=a:

Polynomial approximations

If we continue this process, each time we add a term containing higher derivatives of f at x = a:

$$m = 2$$

$$s_2 = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

If we continue this process, each time we add a term containing higher derivatives of f at x=a:

$$m = 2$$

$$s_2 = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

$$m = 3$$

$$s_3 = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3$$

If we continue this process, each time we add a term containing higher derivatives of f at x = a:

$$m = 2$$

$$s_2 = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

m = 3

$$s_3 = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3$$

$$m=4$$

$$s_4 = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{(4)}(a)}{4!}(x-a)^4$$

If we continue this process, each time we add a term containing higher derivatives of f at x = a:

$$m = 2$$

$$s_2 = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2$$

$$m = 3$$

$$s_3 = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3$$

$$m=4$$

$$s_4 = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \frac{f^{(4)}(a)}{4!}(x-a)^4$$

The polynomials $\{s_1, s_2, s_3, ...\}$ are called *Taylor polynomials* and are the best order n polynomial approximations of f(x) near x = a. This leads us to define:

Given a function, f(x), we define the *Taylor series* of f about x=a by

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

If a = 0, this series is also called the *Maclaurin series* of f

Theorem: Within its radius of convergence, the value of the Taylor series equals the value of the function. In other words, if the radius of convergence of the Taylor series for f is R then

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

for |x - a| < R.

Computing Taylor series

Example: $f(x) = \sin(x), a = 0$

Compute derivatives:

Computing Taylor series

Example: $f(x) = \sin(x), a = 0$

Compute derivatives:

n	$f^{(n)}(x)$	$f^{(n)}(a)$	$\frac{1}{n!}f^{(n)}(a)$
0	$\sin(x)$	$\sin(0) = 0$	0
1	$\cos(x)$	1	1
2	$-\sin(x)$	0	0
3	$-\cos(x)$	-1	$-\frac{1}{3!}$
4	$\sin(x)$	0	0

Example: $f(x) = \sin(x), a = 0$

Compute derivatives:

n	$f^{(n)}(x)$	$f^{(n)}(a)$	$\frac{1}{n!}f^{(n)}(a)$
0	$\sin(x)$	$\sin(0) = 0$	0
1	$\cos(x)$	1	1
2	$-\sin(x)$	0	0
3	$-\cos(x)$	-1	$-\frac{1}{3!}$
4	$\sin(x)$	0	0

So the first few terms of the Taylor series are:

$$\sin(x) = 0 + x + 0x^2 - \frac{1}{3!}x^3 + \dots$$

In fact, since the derivatives repeat, we can conclude that

$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots$$

or, using summation notation:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

Check: $R = \infty$.

Exercises:

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Recall: we cannot evaluate the integral

$$\int_0^1 e^{-x^2} dx$$

using elementary means. But, we can evaluate the integral if we replace the integrand with power series representation:

$$\int_{0}^{1} e^{-x^{2}} dx = \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-x^{2})^{n}}{n!} dx$$

$$= \int_{0}^{1} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{n!} dx$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)n!} \Big|_{0}^{1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)n!}$$

So,

$$\int_0^1 e^{-x^2} dx = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)n!}$$

We can use the partial sums to approximate the value:

\boxed{m}	s_m
1	0.6666666667
2	0.7666666667
3	0.7428571429
4	0.7474867725
5	0.7467291967
6	0.7468360343
7	0.7468228068