Math 8: Calculus in one and several variables Spring 2018 - Homework 7

Return date: Wednesday 05/16/18
keywords: tangent planes, chain rule in several variables
Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.
exercise 1. (4 points) For the following functions find the indicated partial derivatives.
a) $f(x, y)=x^{4} y-x^{3} y^{3}$. Find $f_{x x x}$ and $f_{y x y}$.
b) $f(x, y, z)=y \cdot e^{x^{3}+y^{2}+z^{3}}$. Find $f_{y z}$.
exercise 2. (4 points) Find an equation for the tangent plane to the graph of the given function at the given point.
a) $f(x, y)=x^{2}+3 y^{2}$ at the point $P=(1,1,4)$. Sketch the function and the plane.
b) $f(x, y)=e^{x+2 y}$ at the point $P=(-2,1,1)$.
exercise 3. (4 points) Find the linear approximation $L(x, y)$ or linearization of the function at the given point.
a) $f(x, y)=\sqrt{x y+2}$ at the point $(x, y)=(4,1)$.
b) $f(x, y)=\frac{x+2}{y-2}$ at the point $(x, y)=(0,0)$.

Explain how you have obtained your answer.
exercise 4. (4 points) Suppose you need to know the tangent plane of a surface S containing the point $P=(2,1,3)$. You do not know the equation for S, but you know that the curves

$$
\mathbf{r}_{1}(t)=\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \text { and } \mathbf{r}_{2}(s)=\left\langle 1+s^{2}, 2 s^{3}-1,2 s+1\right\rangle
$$

both lie in S and pass through P.
Find an equation of the tangent plane of S passing through P.
exercise 5. (4 points) Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ where

$$
z=\arctan \left(x^{2}+y^{2}\right) \quad \text { and } \quad x=s \cdot \ln (t), y=t \cdot e^{s}
$$

Math 8: Calculus in one and several variables
 Spring 2018 - Homework 7

Return date: Wednesday 05/16/18
exercise 6. (4 points) The temperature at a point (x, y) in the plane is given by the function $T(x, y)$. A bug crawls along a path c, such that its position after time t in seconds is given by

$$
c: \mathbf{r}(t)=\langle\sqrt{3-t}, 3 t\rangle \text { where } t \in[0,10] .
$$

From measurements you know that the temperature function satisfies

$$
T_{x}(\sqrt{2}, 3)=2 \text { and } T_{y}(\sqrt{2}, 3)=3
$$

How fast is the temperature rising on the bugs path after 1 seconds?

