R. Scott Sanderson 4/21/10

Math 8 — Assignment 1

1. The integral $\int_1^{e^4} \pi(4 - \ln y) dy$ could be the result of a volume of revolution. This integral looks much like $\int \pi(R^2 - r^2)h$, which is the general form for the volume of a solid of revolution using the washer method. Based on the similarities, we can figure out what solid of revolution would result in the original integral.

- Firstly, *dy* is equivalent to *h*. This tells us that the washers are being cut horizontally and that the area must be rotated about the y-axis.
- 4 is analogous to R², the outer radius. One boundary, therefore is:

$$\circ \quad R^2 = 4 \quad \therefore \quad R = 2 \quad so... \quad x = 2$$

• lny is analogous to r², the inner radius. A second boundary is:

$$\circ R^2 = \ln y \quad so... \quad x = \sqrt{\ln y}$$

- Because the first limit of integration is y=1 and $\sqrt{\ln(1)}=0$, a third boundary is x=0.
- The last boundary is y=1. This is the lower limit of integration.

The solid of revolution is produced rotating the area bounded by x = 2, $x = \sqrt{\ln y}$, x=0, and y=1 around the y-axis.

- 2. A second method of evaluating this same volume would be the cylinder method. To do this we must find a circumference, a height, and a thickness so that we can use $\int 2\pi r h(thickness).$
 - The upper limit of the height is the function $x = \sqrt{\ln y}$ \therefore $y = e^{x^2}$. Its lower boundary is y=1. Therefore, the entire height function is $y = e^{x^2} 1$
 - The thickness is dx.
 - The radius is x.
 - The limits of integration are x=0 and x=2, which are boundaries from the original solid.

R. Scott Sanderson 4/21/10

Slicing vertically gives many cylindrical

shells whose volume (effectively their area), can be summed using the above integral

The new definite integral is: $2\pi \int_0^2 (x)(e^{x^2} - 1)dx = 2\pi \int_0^2 \left(xe^{x^2} - x\right)dx$

R. Scott Sanderson 4/21/10

3. To solve the integral, $2\pi \int_0^2 (xe^{x^2} - x) dx$, we must first split the integral and then use u-substitution:

$$2\pi \int_0^2 \left(xe^{x^2} - x\right) dx = 2\pi \int_0^2 \left(xe^{x^2}\right) dx - 2\pi \int_0^2 (x) dx$$

Now that the integral has been split, we will integrate the first half of it using usubstitution:

$$2\pi \int_0^2 (x)e^{x^2} dx \quad let \ u = x^2 \quad du = 2x \ dx$$
$$\pi \int_{x=0}^{x=2} e^u du$$

This gives an easily integrated function:

$$\pi \int_{x=0}^{x=2} e^u du = \pi \Big[e^u \Big]_{x=0}^{x=2}$$

We then replace u with the function it represents:

$$\pi \Big[e^u \Big]_{x=0}^{x=2} = \pi \Big[e^{x^2} \Big]_0^2$$

Now we must reintroduce the second half of the original integrand, $-2\pi \int_0^2 (x) dx$.

This integrates using the power rule to $-\pi \left[x^2\right]_0^2$. Combining the two integrated functions gives:

$$\pi \left[e^{x^2} - x^2 \right]_0^2$$

$$= \pi \left(e^4 - 4 \right) - \pi \left(e^0 - 0 \right) = \pi \left(e^4 - 4 - \pi \right)$$

$$= 155.817$$