
MATH 8 CLASS 9 NOTES, 10/11/2010

Last time, we were interested in finding power series expansions for various functions.
We started by looking at the geometric series (which is also a power series)

1

1− x
= 1 + x + x2 + x3 + . . .

which is valid for |x| < 1. From this example, we found other examples of functions we
could find power series expansions for by either

(1) Substituting an expression bxd for x, where b is a real number, d a positive integer,
(2) Multiplying a function we know a power series expansion for by a power of x,
(3) Differentiating a power series term-by-term,
(4) and integrating a power series term-by-term.

For example, we found that we could find a power series expansion for arctan by inte-
grating its derivative, 1/(1 + x2), and obtained

arctanx = x− x3

3
+

x5

5
− . . . =

∞∑
n=0

(−1)nx2n+1

2n + 1

1. More on integrating power series

One useful fact about power series is that we can also obtain expressions for integrals of
functions we would not usually know how to integrate.

Examples.

• Find the integral of arctanx, expressed as a power series. We integrate the power
series expansion for arctanx term by term:∫

arctanx dx =
x2

2
− x4

12
+

x6

30
− . . . =

∞∑
n=1

(−1)n+1x2n

2n(2n− 1)
.

(We suppress the +C for convenience.) This answer is not totally satisfactory, since
we do not have an expression for this integral in terms of functions we know, but
in practice this answer can be quite useful. For example, this answer can allow us
to numerically estimate definite integrals of arctanx to high precision.
• Estimate ∫ 1

0
arctanx dx

to within an error of 0.01 = 1/100. Using the expression for the indefinite integral
of arctanx in the previous example, we find that

∫ 1

0
arctanx dx =

x2

2
− x4

12
+

x6

30
− . . .

∣∣∣1
0

=
1

2
− 1

12
+

1

30
− . . . =

∞∑
n=1

(−1)n+1

2n(2n− 1)
.

Notice that we are in the fortunate situation where we have an alternating series
which passes the alternating series test! In this case, we can estimate our series by
taking the first n terms of the series, and the error is bounded in size by the first
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term we omit. We want error ≤ 1/100, so this suggests that we should take the
approximation

1

2
− 1

12
+

1

30
− 1

56
+

1

90
for the value of the definite integral we wanted to calculate. The first omitted term
is 1/(12 · 11) = 1/132 < 1/100, so the error is bounded by 0.01, as desired.

2. Power series for general functions: Taylor series

Let f(x) be a function which has derivatives of every order. For example, most functions
we are familiar with, such as sinx, cosx, ex satisfy this property. We want to find out how
to approximate f(x) using polynomials, and perhaps even find a power series expansion for
f(x).

For example, let f(x) = ex. We already saw how to obtain the power series for this
function (at least around x = 0) by being clever about the fact that ex is its own derivative,
but let us consider another way to find the power series for ex. We start by considering
the simpler problem of approximating ex using polynomials. More concretely, we will want
to approximate f(x) = ex at the point a = 0 using polynomials of progressively higher
degrees.

If we are not ambitious at all, we can try to approximate f(x) at x = 0 using a constant
function. The best approximation is obviously the value of f(0) = 1, so f(x) = 1 is the
best 0th degree polynomial which approximates f(x) = ex at x = 0. If we are slightly
more ambitious, we can ask which line is the best approximation to f(x). Let this line have
equation y = c0 + c1x. Then this line should definitely pass through the point (0, 1), so this
means that 1 = c0. Also, we should expect the slope of this line to be equal to the slope of
ex at x = 0: that is, this line and ex should have the same first derivative at x = 0. This
imposes the requirement that c1 = 1 as well, so we find that f(x) = x + 1 is the line which
best approximates ex at x = 0.

We can continue this procedure, and ask which quadratic polynomial f(x) = c0 + c1x +
c2x

2 best approximates ex at x = 0. Again, we want this quadratic to pass through (0, 1)
and have the same slope as ex at x = 0. One checks that this imposes the conditions
c0 = 1, c1 = 1. However, we would also like ex and our quadratic to have the same second
derivative at x = 0. This imposes the condition 1 = e0 = 2c2, or c2 = 1/2. Therefore,
f(x) = 1 + x + x2/2 is the best quadratic approximation to f(x) = ex at x = 0.

In general, suppose we want to know which nth degree polynomial c0+c1+. . .+cnx
n best

approximates ex at x = 0. We want the 0th, 1st, 2nd, . . ., nth derivatives of this polynomial
and ex to all match at x = 0. Consider the kth derivative, where 0 ≤ k ≤ n. Then the
requirement that the kth derivative of the two functions match imposes the condition
e0 = k!ck, because the left hand side is the value of the kth derivative of ex (which is still
ex), while the right hand side is the value of the kth derivative of our polynomial at x = 0.

What this means is that the best nth degree polynomial which approximates ex is given
by

1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
=

n∑
k=0

xk

k!

This suggests that the power series

1 + x +
x2

2!
+

x3

3!
+ . . . =

∞∑
k=0

xn

n!
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is equal to ex, which is what we expect since this is the expression we obtained in the
previous class.

For a general function f(x), which has derivatives of all orders, IF it is true that f(x) is
equal to a power series

∑
cn(x− a)n near x = a, then we can find the coefficients cn by an

argument very similar to the one above. We equate the nth derivatives of f(x) at x = a
and the power series

∑
cn(x− a)n to find the condition

f (n)(a) = n!cn ⇔ cn =
f (n)(a)

n!

This means that if we know f(x) is represented by a power series
∑

cn(x− a)n near x = a,
that power series must be the series

f(a) +
f ′(a)

1
(x− a) +

f ′′(a)

2!
(x− a)2 + . . . =

∞∑
n=0

f (n)(a)

n!
(x− a)n

A power series of this form is called the Taylor series for f(x) at the point x = a. In the
special case where a = 0, we sometimes call the resulting series a Maclaurin series.

Example. Find the Maclaurin series for f(x) = cosx, and find this series’ interval of con-
vergence. The Maclaurin series is the Taylor series for f(x) at x = 0, so what we need to do
is evaluate the various derivatives of cosx at x = 0. We find that f ′(x) = − sinx, f ′′(x) =

− cosx, f ′′′(x) = sinx, f (4)(x) = cosx, so the derivatives of f(x) repeat after four deriva-

tives. This means that f(0) = 1, f ′(0) = 0, f ′′(0) = −1, f ′′′(0) = 0, f (4)(0) = 1, etc., and
the Maclaurin series for cosx is given by

1− x2

2!
+

x4

4!
− x6

6!
+ . . . =

∞∑
n=0

(−1)nx2n

(2n)!

We can determine the interval of convergence of this power series in the usual way, by
applying the ratio test. The limit of the ratio |an+1/an| of the above power series is

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ x2

(2n + 2)(2n + 1)

∣∣∣∣ = 0

regardless of the value of x, so the ratio test tells us that this power series converges for all
real x.

3. The error term for Taylor series

We still need to address the question of whether the Taylor series, at the point x = a, of
a function f(x) is equal to the function f(x) itself near x = a. While intuition may suggest
that this should always be true, it turns out that there are functions which do not equal
their Taylor series at any point except x = a! (Check question 12.10.70(?), pg. 783 for an
example.) Nevertheless, these cases turn out to be rather isolated, and the theorem which
we will develop in this section allows us to determine when the Taylor series of a function
is equal to the function itself.

Let f(x) be a function, and let
∑

f (n)(a)(x − a)n/n! be its Taylor series at the point
x = a. Let Tn be the polynomial defined by taking the sum of the first n + 1 terms of the
Taylor series:

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . +

f (n)

n!
(x− a)n
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In other words, Tn(x) is the best approximation to f(x), near x = a, amongst all poly-
nomials of degree n. Let Rn(x) = f(x) − Tn(x); that is, Rn(x) is the remainder of the
approximation of Tn(x) to f(x). The idea is that we want to show Rn(x) → 0 as n → ∞
for all x near a. The following theorem, which we do not prove, provides the principal
means of showing this, by estimating the error of Tn(x).

Theorem. (Taylor’s Inequality, or Taylor Remainder Theorem) With the notation as
above, consider all x satisfying |x − a| < d, for some d. Let M be a number such that

|f (n+1)(x)| < M for all x satisfying |x − a| < d. Then for all x with |x − a| < d, the
remainder Rn(x) satisfies the following inequality:

|Rn(x)| ≤ M

(n + 1)!
|x− a|n+1

The gist of this theorem is that if we can bound the n + 1th derivative of f(x) on the
interval for which we want to approximate f(x), then we can bound the remainder of f(x)
when approximated by Tn(x). Let us see how this allows us to show that a function equals
its Taylor series, and how this theorem lets us numerically approximate various functions
to specified degrees of accuracy.

Examples.

• Estimate e to an accuracy of 0.001 = 10−3. We use the Taylor series for ex, centered
around x = 0, to estimate this number. If we take the Taylor series for ex and plug
in x = 1, we find

e = 1 +
1

1!
+

1

2!
+

1

3!
+ . . . =

∞∑
n=0

1

n!

If we take terms up to 1/n! as an approximation, the Taylor remainder theorem
tells us that the remainder Rn(1) is bounded by

|Rn(1)| ≤ M

(n + 1)!
1n+1

where M is an upper bound for et on the interval |t| < 1.001, say. In particular, we
can take M = e1.001, and using the fact that M < 3, this bound on the remainder
becomes

|Rn(1)| ≤ 3

(n + 1)!

We want an error less than 10−3. Therefore, we might want to take n = 6, since
(6 + 1)! = 7! = 5040. The number 1 + 1/1 + 1/2! + 1/3! + 1/4! + 1/5! + 1/6! is thus
our approximation to e.

4. Some other examples

We conclude with a few more examples which illustrate slight modifications of the tech-
niques presented here. In the next class we will consider more examples of Taylor and
Maclaurin series.

Examples.
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• Calculate the Maclaurin series for x2ex. At first glance, one might want to calculate
the derivatives of x2ex and evaluate them at x = 0 to determine the Maclaurin series
for this function. However, this takes quite a bit of work and there is actually a
much simpler way to solve the problem. Notice that we already know the Maclaurin
series for ex, and we are simply multiplying ex by x2. Therefore, one has

x2ex = x2
(

1 + x +
x2

2!
+

x3

3!
+ . . .

)
= x2 +

x3

1!
+

x4

2!
+ . . . =

∞∑
n=0

xn+2

n!

This is an application of the methods we learned in the previous class, where
we could easily find power series expansions for functions which were obtained by
simpler functions we already knew power series expansions for by multiplying by
some power of x.

• Calculate the Maclaurin series for e−x
2
. Again, if one tries to take derivatives and

evaluate at x = 0, one gets a crazy mess. It is much simpler to take the Maclaurin
series for ex, and substitute −x2 for x everywhere:

e−x
2

= 1− x2 +
x4

2!
− x6

3!
+ . . . =

∞∑
n=0

(−1)nx2n

n!

• Find the 100th derivative of f(x) = e−x
2

evaluated at x = 0. On the surface,
this problem seems basically impossible, at least without a calculator or computer.

Taking derivatives of e−x
2

quickly becomes unmanageable because you get more
and more terms with each derivative. However, the question is phrased in such a
way that lets us take advantage of the fact that we know the Maclaurin series for

e−x
2
, calculated in the previous example.

The 100th derivative of e−x
2

at x = 0 has something to do with the term corre-

sponding to x100 in the Maclaurin series for e−x
2
. In particular, this term is equal

to

f (100)(0)

100!
x100

On the other hand, we know that the 100th term of this Maclaurin series is (−1)50x100/50!.

This means that f (100)(0)/100! = 1/50!, or f (100)(0) = 100!/50!.
• Calculate the Taylor series of f(x) = e2x around the point a = 1. To solve this

problem, we need to be able to calculate the value of f (n)(1) for all n ≥ 0. Notice

that f ′(x) = 2e2x, f ′′(x) = 4e2x, . . ., so f (n)(x) = 2ne2x. This means f (n)(1) = 2ne2.
We then use the formula for a Taylor series to obtain the answer:

f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+. . . = e2+2e2(x−1)+

4e2

2!
(x−1)2+

8e2

3!
(x−1)3+. . . =

∞∑
n=0

2ne2

n!
(x−1)n

Unlike the previous examples, we cannot simply replace x with 2x in the Maclau-
rin series for ex to solve this problem, because the problem asks for a Taylor series
around x = 1, not x = 0.


