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1. The Direct Comparison Test

So far, we have three types of tests for determining whether a series converges: the
geometric series test (if a series is geometric, which is rather rare), the nth term test for
divergence, and the integral test. The integral test has some limitations; for instance, we
need the terms of a series to be monotone decreasing and the values of a function at integers
which we can easily integrate.

Today, we’ll learn about a pair of tests which let us translate the problem of determining
the convergence or divergence of a series to understanding the convergence or divergence
of a simpler, ‘related’ series.

The idea is a variation on the idea behind the integral test. Suppose we have two
sequences, an, bn, which satisfy 0 ≤ an ≤ bn for all n. Then

n∑
i=1

ai ≤
n∑

i=1

bi,

so the partial sums for the series
∑

an are less than the corresponding partial sums for∑
bn.
If

∑
an diverges, this means that the sequence of its partial sums diverge to infinity

(notice that we are using the fact that an ≥ 0), so from this we can conclude that
∑

bn
also diverges. In other words, what we are saying is that if 0 ≤ A ≤ B, and A is very big,
B is also very big.

Now suppose that 0 ≤ an ≤ bn, except that now we know
∑

bn converges, say to L.
Since all the an, bn are positive, this means that

n∑
i=1

ai ≤
n∑

i=1

bi ≤ L.

But then this tells us that
∑

an converges, because its sequence of partial sums is a mono-
tonic bounded sequence (monotonic increasing since each ai is positive, and bounded from
below by 0 and above by L). Again, basically what is happening here is that we are saying
if 0 ≤ A ≤ B, and if B is small, then A has to be small as well.

These two arguments give us the following test:

The direct comparison test. Suppose 0 ≤ an ≤ bn for all n. Then

• If
∑

an diverges, then
∑

bn diverges.
• If

∑
bn converges, then

∑
an converges.

It is probably worth pointing out that if
∑

an converges, you can’t conclude anything
about

∑
bn, and if

∑
bn diverges, you can’t conclude anything about

∑
an. Let’s look at

a few concrete examples to see why this test can be helpful.

Examples.
1
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• Determine the convergence or divergence of the series

∞∑
n=1

1.5 + (−1)n

n
. This series

is not a p-series, nor a geometric series, nor a series we can apply the integral
test to, nor a series which we can apply the nth term test to. But it looks pretty
similar to the harmonic series. Let’s write the first few terms of this series out:
0.5/1 + 1.5/2 + 0.5/3 + 1.5/4 + 0.5/5 + . . ..

Notice that 0 ≤ 0.5/n ≤ (1.5 + (−1)n)/n, regardless of what n is. This is a setup
which we can use the direct comparison test, with an = 0.5/n, bn = (1.5+(−1)n)/n.
In this case, it is the series an which we can easily determine the convergence or
divergence of; it diverges since it is just a non-zero constant times the harmonic
series. So the direct comparison test tells us that the original series is divergent as
well.

• Determine the convergence or divergence of the series
∞∑
n=1

(sinn)2

n3
. The individual

terms of this series are difficult to get a handle on, since sinn is a very strange
number. (It’s certainly not something we can easily write down in terms of numbers
familiar to us.) But notice that 0 ≤ (sinn)2 ≤ 1, always. Therefore, we can do a
direct comparison test with

an =
(sinn)2

n3
, bn =

1

n3
.

Since
∑

bn converges, being a p-series with p = 3, the direct comparison test tells
us that

∑
an converges as well. (Forget about trying to calculate what the exact

value of this series is, that’s either very hard or currently impossible.)
• Strictly speaking, to apply the direct comparison test we only need to know that

0 ≤ an ≤ bn for all n past a certain point, not all n ≥ 1. For example, consider the

series
∞∑
n=1

n + 12

n24n
. Notice that n + 12 ≤ n2 when n ≥ 4. Then we can apply direct

comparison to the series with

an =
n + 12

n24n
, bn =

1

4n
,

even though an ≤ bn is not true for n = 1, 2, 3. Again, we can ignore these terms
because the convergence and divergence of

∑
an,

∑
bn is not impacted by a finite

number of terms; in this case, the first four terms of the series. In any case, notice
that

∑
bn =

∑ 1
4n , and this series converges since it is a geometric series with ratio

r = 1/4.
• Consider the series

∑∞
n=1 1/n!. We will learn an easier way to check the conver-

gence or divergence of this series in the near future, but for now let’s try to use a
comparison test.

If we try an = 1/n!, bn = 1/n, then it is certainly true that an ≤ bn for all
n. However, notice that

∑
bn diverges, so with this setup the direct comparison

test cannot tell us anything. However, notice that if we let an = 1/n!, bn = 1/n2,
we might be able to use the direct comparison test. The first few terms of these
two sequences are 1/1, 1/2, 1/6, 1/24, 1/120, . . ., vs 1/1, 1/4, 1/9, 1/16, 1/25, . . .. So
while an ≤ bn is not true for n = 1, 2, 3, it certainly seems to be true when n ≥ 4.
Let’s check that this is indeed the case. We want to show that an/bn ≤ 1 for n ≥ 4.
Let’s write out an/bn:
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an
bn

=
1/n!

1/n2
=

n2

n!
=

n · n
n · (n− 1) · (n− 2) · · · (1)

.

Since n/n = 1, and n/(n− 1) ≤ 2 for all n, this tells us that

an
bn
≤ 2

(n− 2)!
,

at least when n ≥ 2. The right hand side of this expression is evidently ≤ 1 when
n ≥ 4, which shows what we wanted to show. So we can apply the direct comparison
test to an = 1/n!, bn = 1/n2, and since

∑
bn converges,

∑
an does as well.

2. The Limit Comparison test

There is a test very closely related to the direct comparison test, known as the limit
comparison test. Suppose we have two series,

∑
an,

∑
bn, with 0 < an, bn, and we know

that limn→∞ an/bn = c, where c is some positive (in particular, nonzero) number. This
means that an is ‘more or less’ equal to bn times c, so we should expect

∑
an to converge

exactly when
∑

bn converges. As a matter of fact, it’s not too difficult to make this more
precise to prove the following test:

The limit comparison test. Let
∑

an,
∑

bn be series with 0 < an, bn for all n such that
limn→∞ an/bn = c, where c is a positive number. Then

∑
an converges exactly when

∑
bn

converges.

In principle it should be possible to just use the direct comparison test whenever you
want to use the limit comparison test, but in certain situations the limit comparison test
is easier to use.

Examples.

• Determine the convergence or divergence of the series
∞∑
n=1

n +
√
n√

n3 + 7n2
.

This series looks a little crazy, and it is not so clear exactly how or if we should
use direct comparison on it. Fortunately, this is the type of series well suited to
limit comparison. Notice that the dominant term in the numerator, as n gets large,
is n. In the denominator, the dominant term under the square root sign is n3. So
perhaps we can try using limit comparison against the series

∑ n
n3/2 . Let’s see what

happens, with

an =
n +
√
n√

n3 + 7n2
, bn =

n

n3/2
=

1

n1/2
.

We want to take the limit, as n→∞, of the fraction

an
bn

=
n +
√
n√

n3 + 7n2
· 1/n

1/n3/2
.

The reason for writing 1/bn in this funny way is because we are going to multiply
the numerators together, separately from the denominators:

n +
√
n√

n3 + 7n2
· 1/n

1/n3/2
=

1 + 1/
√
n√

1 + 7/n
.

With this expression, it is easy to see that as n → ∞, the limit of this is equal to
1. So we can apply the limit comparison theorem. Since

∑
bn is a p-series with
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p = 1/2 < 1,
∑

bn diverges, so the limit comparison theorem says
∑

an diverges as
well.

• Determine the convergence or divergence of the series
∞∑
n=1

3n2

(2n2 − 3n + 4)5n
.

There are a variety of ways to solve this problem. Let’s use limit comparison. If
an is the nth term of the given series, let’s choose bn = 1/5n. Then

an
bn

=
3n2

(2n2 − 3n + 4)5n
· 5n =

3n2

(2n2 − 3n + 4)
.

This expression tends to 3/2 as n → ∞, so we can use the limit comparison test.
And since

∑
bn converges (being a geometric series with ratio r = 1/5), we can

conclude that the original series an converges as well.

Knowing when to use the comparison tests takes a little bit of practice. In general, if you
have a series which ‘looks like’ a simpler series whose convergence or divergence you can
determine using some other test (p-series, geometric, integral), then you might be able to
use a comparison test if you can actually show that it is applicable. The limit comparison
test is usually handy if you see polynomials in n in the numerator and denominator of a
series. The direct comparison test can be useful if you see expressions where there is some
variation in the numerator or denominator, but the variation is bounded; for example,
something like adding (−1)n or sinn, which is always of absolute value ≤ 1.

Ultimately, the best way to learn how and when to use the comparison tests is to work
out many different problems. Your pattern recognition abilities will improve with practice.


