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1. Directional derivatives

Recall that the definitions of partial derivatives of f(x, y) involved limits

lim
h→0

f(a+ h, b)− f(a, b)

h
, lim
h→0

f(a, b+ h)− f(a, b)

h
.

In these two limits, we only need to know the values of f(x, y) when y = b, x = a respec-
tively: that is, we only need to know the values of f(x, y) on some line in the xy-plane
which passes through (a, b). Furthermore, these lines are either horizontal or vertical. If we
think of the functions f(x, b) or f(a, y) as functions of the single variable x, y, respectively,
then the partial derivatives of f(x, y) correspond to the usual derivatives of these single
variable functions.

We want to now describe a generalization of this idea, called a directional derivative.
Suppose that we consider f(x, y) on some line passing through (a, b) which is not necessarily
vertical or horizontal anymore. Then how can we calculate the rate of change of this function
on this line?

Before tackling this problem, we consider the question of how we can describe the various
lines which pass through f(x, y). We can, for example, use parametric equations given by
using a direction vector for a line and the point (a, b). However, for our purposes, we will
want to parameterize these lines using the parameter t in such a way that we travel a
distance of one unit on the line when t changes by 1.

Example. Consider the line given by x = 1 + 3t, y = 3 + 4t. What is the distance between
two points (1 + 3t, 3 + 4t) and (1 + 3(t + 1), 3 + 4(t + 1))? That is, when we increment t
by 1, how far does the point (x, y) travel? A quick calculation shows that the answer is 5;
and in general, that if a line has direction vector v, then two points whose parameter t are
separated by 1 will be distance |v| apart.

If we want to re-parameterize this line in such a way so that we travel unit distance when
t changes by 1, we will need to multiply v by a scalar to make this vector unit length: that
is, we need to find a unit vector which points in the same direction as v. We know that to
do this we should divide v by |v| = 5; therefore, x = 1 + 3t/5, y = 3 + 4t/5 gives another
parameterization of this line which satisfies the property that when t increases by 1, the
point (x, y) moves by distance 1.

Now suppose we are given a function f(x, y), a point (a, b), and a unit vector u = 〈u1, u2〉,
which we think of as describing a line passing through (a, b). This line is given by the
parametric equations x = a+ u1t, y = b+ u2t. Then the directional derivative of f(x, y) at
(a, b) in the direction (or with respect to the direction) u is written as Duf and defined to
be the limit

Duf(a, b) = lim
h→0

f(a+ u1h, b+ u2h)− f(a, b)

h
.

This can be thought of as the usual derivative of the single variable function f(a+u1t, b+u2t)
with respect to the variable t.
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Remarks.

• This definition of directional derivative is a genuine generalization of partial deriva-
tives: fx(a, b) corresponds to the directional derivative of f in the direction of the
unit vector i = 〈1, 0〉 : Dif(a, b), and fy(a, b) corresponds to the directional deriva-
tive of f in the direction of j = 〈0, 1〉.
• When calculating directional derivatives, be absolutely sure that you are using a

unit vector in the definition. For example, if you use 〈3, 4〉 instead of 〈3/5, 4/5〉,
your answer will be off by a factor of 5.
• There are two unit vectors which can be used as direction vectors for a line, and they

are negatives of each other. When calculating directional derivatives, the choice of
unit vector does matter, since replacing a direction vector with its negative will
flip the sign of the corresponding directional derivative. This corresponds to the
intuitive fact that if you go uphill when walking in some direction, if you go in the
opposite direction you will go downhill at an equal rate.
• The value of the directional derivative can be interpreted as the rate of change of

the function f(x, y) in the direction u. If you imagine f(x, y) as describing the
height of a hill over (x, y), then the directional derivative is a measure of how steep
the hill is in the direction of u.
• Related to the above remark, if we look at the graph of the function f(a+u1t, b+u2t),

this gives a curve in three dimensions. Then the tangent line to this curve at t = 0,
or (a, b, f(a, b)) can be thought of as having slope equal to the directional derivative
of f(x, y) at (a, b), in the direction of 〈u1, u2〉.

2. The gradient

We now try to find a quick way of calculating directional derivatives. The definition of
a directional derivative is

Duf(a, b) = lim
h→0

f(a+ u1h, b+ u2h)− f(a, b)

h
.

We can rewrite the numerator of this expression as

f(a+ u1h, b+ u2h)− f(a+ u1h, b) + (f(a+ u1h, b)− f(a, b)).

In the first term, only the y variable changes, while in the second term, only the x variable
changes. Therefore, it should not be too surprising (and one can easily check once one
knows to perform this trick) that the directional derivative in the direction of u = 〈u1, u2〉
is equal to

u1fx(a, b) + u2fy(a, b),

at least when the function f(x, y) is differentiable at (a, b). That is, computing a directional
derivative boils down to calculating some expression involving partial derivatives. A useful
way of remembering this formula involves the following function:

Definition. Let f(x, y) be a function of two variables. Then the gradient of f is the
vector-valued function written ∇f and defined by

∇f(x, y) = 〈fx(x, y), fy(x, y).〉
∇f is only defined whenever both fx, fy are both defined.



MATH 8 FALL 2010 CLASS 27, 11/19/2010 3

We commonly call ∇ ‘del’ and may call the gradient of f ‘del’ f . Sometimes you may
see gradf instead of ∇f . In certain English-speaking countries (India in particular), ‘del’
is instead called ‘nabla’.

With this definition in hand, the directional derivative of f(x, y) at (a, b) in the direction
of the unit vector u = 〈u1, u2 is given by the dot product

∇f(a, b) · 〈u1, u2〉 = u1fx(a, b) + u2fy(a, b).

Examples.

• Compute the gradient of f(x, y) = x2y+sin(xy). Calculating a gradient is equivalent
to calculating partial derivatives: fx = 2xy + y cos(xy), fy = x2 + x cos(xy), so the
gradient of f is given by ∇f = 〈2xy + y cos(xy), x2 + x cos(xy)〉.
• Calculate the directional derivative of f(x, y) = x2 + y2 at (4, 7) in the direction
〈1, 2〉. Remember that when calculating directional derivatives, our directions need
to be specified by a unit vector. The unit vector that points in the same direction
as 〈1, 2, 〉 is 〈1/

√
5, 2/
√

5〉. The gradient of f(x, y) is ∇f = 〈2x, 2y〉. In particular,
∇f(4, 7) = 〈8, 14〉. Then the directional derivative in question is

〈8, 14〉 · 1√
5
〈1, 2〉 =

36√
5
.

• Calculate the directional derivative of f(x, y) = exy at (0, 1) in the direction of
〈1, 1〉. The gradient of f(x, y) is ∇f(x, y) = 〈yexy, xexy〉. At (0, 1) this is equal to
∇f(0, 1) = 〈1, 0〉. Then the directional derivative in question is equal to

〈1, 0〉 · 1√
2
〈1, 1〉 =

1√
2
.

• Sometimes we can specify a direction not using a vector, but instead using an angle.
For example, we may ask for the directional derivative of a function f(x, y) at (a, b)
in the direction of an angle θ = π/3, say. By this, we mean the unit vector which
forms an angle of θ in the counterclockwise direction with 〈1, 0〉 = i. To calculate a
directional derivative given this description for a direction, we need to find the unit
vector which forms an angle θ (in the counterclockwise direction) with 〈1, 0〉. This
is evidently the vector 〈cos θ, sin θ〉, which in the case of θ = π/3 is 〈1/2,

√
3/2〉.

Then the directional derivative of f(x, y) at (a, b) in the direction θ = π/3 is given
by the dot product

∇f(a, b) · 〈cosπ/3, sinπ/3〉 = ∇f(a, b) · 1

2
〈1,
√

3〉.

• You may sometimes be asked for the angle above the horizontal that the tangent
line (or tangent vector) to f(x, y) at (a, b) in the direction of u is. If you think of
z = f(x, y) as describing the surface of a hill, for instance, then this angle is the
angle of ascent as you move in the direction of u. For example, consider the function
f(x, y) = lnx + ln y. At the point (1, 1), what is the angle above the horizontal of
the tangent lines to z = f(x, y) in the directions of 〈1, 0〉, 〈1/

√
2, 1/
√

2〉?
We begin by calculating ∇f(1, 1) = 〈1, 1〉. Then the directional derivatives in the

direction of 〈1, 0〉, 〈1/
√

2, 1/
√

2〉 are 1,
√

2, respectively. The angles of the tangent
lines above the horizontals are then arctan 1, arctan

√
2. Indeed, if we travel unit

distance along each of the lines given by these direction vectors, then the z-value of
the corresponding tangent line increases by 1,

√
2. These angles are then given by

arctan 1/1, arctan
√

2/1.
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We conclude by remarking that all of the above ideas can be generalized to functions of
n variables, not just 2 variables. For example, given a function f(x1, . . . , xn), the gradient
of f is the vector-valued function

∇f =

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

Given a unit vector u = 〈u1, . . . , un〉, the partial derivative of f at (a1, . . . , an) in the
direction of u is defined by the limit

Duf(a1, . . . , an) = lim
h→0

f(a1 + u1h, . . . , an + unh)− f(a1, . . . , an)

h
.

In practice, we calculate this directional derivative by taking the dot product

∇f(a1, . . . , an) · u.

Example. Calculate the directional derivative of f(x, y, z) = xy + y ln z at (1, 2, 1) in the
direction of 〈2, 2, 1〉. We begin by calculating the gradient of f(x, y, z):

∇f = 〈y, x+ ln z, y/z〉.
At the point (1, 2, 1), this is equal to ∇f(1, 2, 1) = 〈2, 1, 2〉. The unit vector that points in
the same direction as 〈2, 2, 1〉 is 〈2/3, 2/3, 1/3〉, and so the directional derivative is

〈2, 1, 2〉 · 2

3
〈2, 2, 1〉 =

8

3
.

3. The direction of maximum increase

Suppose we have a function f(x, y) and a point (a, b) we are interested in. If we think
about the surface z = f(x, y) and the point above (a, b), then there should be a direction
in which f(x, y) increases most rapidly. How can we find this direction?

The directional derivative of f(x, y) at (a, b) in the direction of a unit vector 〈u1, u2 = u
is given by the dot product ∇f(a, b) · u. We want to maximize this number amongst all
possible unit vectors u. Recall, however, that

∇f(a, b) · u = |∇f(a, b)||u| cos θ,

where θ is the angle between ∇f(a, b) and u. Since the lengths of these two vectors do not
depend on u, this expression is maximal when θ = 1: that is, when u,∇f(a, b) point in the
same direction. Therefore, we see that the gradient vector points in the direction in which
f is increasing most rapidly, and is increasing at a rate of |∇f(a, b)||u| = |∇f(a, b)|.

Examples.

• Consider z = x2 + y2. At the point (2, 3), in what direction is z increasing most
rapidly? How rapidly is z increasing in that direction? We begin by calculating
∇z = 〈2x, 2y〉. Therefore, ∇z(2, 3) = 〈4, 6〉. This is the direction in which z is
increasing most rapidly. Furthermore, z is increasing at a rate of |∇z(2, 3)| =√

42 + 62 = 2
√

13 in this direction.

• Suppose a hill has height given by f(x, y) =
100

1 + x2 + y
. If we are at the point (2, 5),

in what direction should we go if we want to go as downhill as possible? What is the
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rate of descent of the hill in that direction? Again, we start by calculating ∇f(x, y).
In this case, we have

∇f(x, y) =

〈
100(−2x)

(1 + x2 + y)2
,

−100

(1 + x2 + y)2

〉
.

At the point (2, 5), the gradient is equal to ∇f(2, 5) = 〈−4,−1〉. Therefore, the
height increases fastest in the direction of 〈−4,−1〉. However, we want the direction
in which the height decreases the fastest. A bit of thought suggests that this should
simply be the opposite direction from 〈−4,−1〉; namely, the direction 〈4, 1〉. In this
direction, the rate of descent is equal to

√
17 = | − ∇f(2, 5)|.

4. The gradient and level curves/surfaces, tangent planes

Consider the function f(x, y) = x2 + y2. Recall that the level curves of this function
are (unevenly) spaced concentric circles. On the other hand, the gradient is equal to
∇f(x, y) = 〈2x, 2y〉. If we sketch the gradient and level curves on the same graph, we
quickly see that the gradient vectors all seem to be orthogonal to the level curves of f(x, y).
This turns out to be true in general.

Consider a general level curve f(x, y) = k. Suppose we parameterize this level curve by
a parameter t, so that 〈x(t), y(t)〉 describes this level curve. (It doesn’t matter what the
exact parameterization is.) Then we have f(x(t), y(t)) = k. Suppose we differentiate this
equation with respect to the variable t, using the chain rule:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= 0.

Recall that dx/dt = x′(t), dy/dt = y′(t) are the components to tangent vectors of the
vector-valued function 〈x(t), y(t)〉; that is, 〈x′(t), y′(t)〉 is the tangent vector to 〈x(t), y(t)〉.
In particular, this tangent vector is a direction vector for the tangent line to f(x, y) = k at

the point given by the parameter t. On the other hand, ∇f(x, y) =

〈
∂f

∂x
,
∂f

∂y

〉
. Therefore,

the previous equation can be rewritten as

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
= ∇f(x, y) · 〈x′(t), y′(t)〉 = 0.

That is, ∇f(x, y) is orthogonal to the tangent line to f(x, y) = k, which is equivalent to
saying that ∇f(x, y) is orthogonal to the curve f(x, y) = k.

There was nothing special about the situation of two variables. In particular, if instead
we have a function f(x, y, z) of three variables, and consider the level surface f(x, y, z) = k,
then ∇f(a, b, c), which is now a vector in R3, will be orthogonal to the tangent line of
any curve on f(x, y, z) = k passing through (a, b, c). It is not hard to show that if f
is differentiable, these tangent lines actually form a plane, which is the tangent plane to
f(x, y, z) = k at (a, b, c). Then what we have shown is that the gradient vector ∇f(a, b, c)
is a normal vector for the tangent plane to f(x, y, z) = k at (a, b, c). Furthermore, if we
think of the line passing through (a, b, c) with direction vector ∇f(a, b, c), then this line is
normal to the tangent plane, and we sometimes call this the normal line to f(x, y, z) = k
at (a, b, c).

In particular, the tangent plane to f(x, y, z) = k at (a, b, c) has equation

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0.

Example. Consider the sphere x2 + y2 + z2 = 9. Calculate the equation for the tangent
plane and normal line to the sphere at (2, 1, 2).
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We begin by calculating the gradient of f(x, y, z) = x2 + y2 + z2. We see that ∇f =
〈2x, 2y, 2z〉. Therefore, the gradient at (2, 1, 2) is equal to ∇f(2, 1, 2) = 〈4, 2, 4〉. Therefore,
the tangent plane to x2 + y2 + z2 = 9 at (2, 1, 2) has normal vector 〈4, 2, 4〉. The equation
of this plane must then be

4x+ 2y + 4y = 18, or 2x+ y + 2y = 9.

The normal line has direction vector 〈4, 2, 4〉 and passes through (2, 1, 2). Therefore, the
normal line is given by parametric equations x = 2 + 4t, y = 1 + 2t, z = 2 + 4t. Notice that
this line passes through the origin.

We see that the gradient vector provides a means of calculating not only directional
derivatives, but also provides information on the direction of greatest increase or decrease,
and also provides a convenient way of calculating the equation of tangent lines or tangent
planes to level curves.


