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1. Arc length of curves

Now that we know how to take derivatives of vector-valued functions, we briefly describe
how to solve a natural and common geometric problem. Suppose we have a curve, perhaps
given by a vector-valued function ~r. If ~r is differentiable on an interval [t1, t2], then it draws
out some continuous curve from ~r(t1) to ~r(t2). A natural question to ask is how long this
curve is.

Recall that a definite integral
∫ b
a f(x) dx can be interpreted as the signed area under the

graph of f(x) from a to b, and is calculated by using rectangles of smaller and smaller width
to approximate this area. In a similar way, given a curve, we might approximate its length
by using shorter and shorter line segments, which give better and better approximations
the smaller they get. For example, we might use line segment connecting ~r(t) and ~r(t+ h)
as an approximation for the length of the curve from ~r(t) to ~r(t+ h).

The length of this line segment can be easily determined in terms of the component
functions of ~r. For example, if ~r(t) = 〈x(t), y(t)〉, then the length of the segment, which
we call `, connecting ~r(t) = (x(t), y(t)) and ~r(t + h) = (x(t + h), y(t + h)) is given by the
Pythagorean Theorem:

`2 = (x(t+ h)− x(t))2 + (y(t+ h)− y(t))2

Notice that (x(t + h) − x(t))2 can be approximated by x′(t)h, and this approximation
becomes better and better as h → 0. Therefore, it is plausible that the arc length of the
curve traced out by ~r from t1 to t2 is given by the definite integral

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ t2

t1

√
x′(t)2 + y′(t)2 dt

Let us begin by checking that this formula for arc length matches the lengths of curves that
we already know the lengths of, from geometry:

Examples.

• Consider the line segment from (x1, y1) to (x2, y2). This line segment has length√
(x2 − x1)2 + (y2 − y1)2

by the Pythagorean Theorem. We can also parametrize this line segment (in a
one-to-one fashion) using the function ~r(t) = 〈x(t), y(t)〉, 0 ≤ t ≤ 1, where x(t) =
x1 + (x2 − x1)t, y(t) = y1 + (y2 − y1)t. Then x′(t) = (x2 − x1), y′(t) = (y2 − y1), so
the arc length formula gives∫ 1

0

√
(x2 − x1)2 + (y2 − y1)2 dt =

√
(x2 − x1)2 + (y2 − y1)2

as expected.
• Calculate the circumference of the unit circle using the arc length formula. We can

parameterize the unit circle by letting ~r(t) = 〈cos t, sin t〉 where 0 ≤ t ≤ 2π. Then
x′(t) = − sin t, y′(t) = cos t, and the arc length formula reads
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∫ 2π

0

√
(− sin t)2 + (cos t)2 dt =

∫ 2π

0
dt = 2π

again as expected. Notice that if we had let t range from 0 to 4π, say, then ~r(t)
traces out the unit circle twice. Even though the circle still has circumference 2π,
the arc length formula gives a value of 4π, because the circle had been traced out
twice. It is perhaps more accurate to think of the arc length formula as giving the
distance a particle travels if its position is given by ~r(t); nevertheless, as long as
this particle traverses a curve in such a way so that it visits each point of that curve
exactly once, the arc length formula will give the length of the curve.

There is nothing special about two dimensions. If ~r(t) = 〈r1(t), . . . , rn(t), then the arc
length of the curve from ~r(t1) to ~r(t2) is∫ t2

t1

√
r′1(t)

2 + . . .+ r′n(t)2 dt.

Example. Calculate the arc length of the curve given by ~r(t) = 〈t, t2, 2t3/3〉 for 0 ≤ t ≤ 2.
We see that ~r ′(t) = 〈1, 2t, 2t2, so the arc length of this curve is given by∫ 2

0

√
12 + (2t)2 + (2t2)2 dt =

∫ 2

0

√
1 + 4t2 + 4t4 dt.

Notice that we are in the fortunate position where we can factor the term inside the square
root. We obtain∫ 2

0

√
(1 + 2t2)2 dt =

∫ 2

0
1 + 2t2 dt = t+

2t3

3

∣∣∣2
0

= 2 + 16/3 = 22/3.

Finally, let us consider the special case of arc lengths of graphs of functions y = f(x)
from x1 to x2. Any graph of a function can be parameterized by x = t, y = f(t). Therefore,
x′(t) = 1, y′(t) = f ′(t), so in this case, the arc length for the graph of f(x), from x1 to x2,
is given by ∫ x2

x1

√
1 + f ′(x)2 dx.

Example. Calculate the length of the parabola y = x2 from x = 0 to x = 2. Since y′ = 2x,
we want to calculate the integral ∫ 2

0

√
1 + 4x2 dx.

This has the form of an integral we should use a trigonometric substitution on. Recalling
our work from two weeks ago, we use the substitution x = tan θ/2. Then dx = sec2 θ/2 dθ,
and the bounds x = 0, 2 become θ = 0, arctan 4. Then the integral becomes∫ arctan 4

0

√
1 + tan2 θ

sec2 θ

2
dθ =

∫ arctan 4

0
sec3 θ dθ.

Recall that to evaluate this integral, we need to use a ‘reduction formula’ obtained from in-
tegration by parts, which was on a homework assignment from several weeks ago. Applying
this reduction formula gives
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1

2

∫
sec3 θ dθ =

1

2

(
tan θ sec θ

2
+

1

2

∫
sec θ dθ

)
.

This last integral we know how to evaluate. Therefore, the definite integral we are interested
in is equal to

1

4
(tan θ sec θ + ln | sec θ + tan θ|)

∣∣∣arctan 4

0
.

At θ = 0, the above expression is also equal to 0, because tan θ = 0, sec θ = 1. At
θ = arctan 4, we have tan θ = 4. To calculate sec θ, draw a right angle triangle with angle
θ satisfying tan θ = 4. For example, a right angle triangle with opposite side 4, adjacent
side 1, and hypotenuse

√
17 works. Therefore, sec θ =

√
17. Then the above expression at

θ = arctan 4 is equal to

1

4
(4
√

17 + ln(4 +
√

17)) =
√

17 +
1

4
ln(4 +

√
17).

It is remarkable that to calculate the arc length of a curve as simple as y = x2, we obtain
trigonometric integrals and logarithms!

2. Velocity and Acceleration

One of the most useful and immediate applications of differentiation and integration is
the ability to calculate the velocity and acceleration of an object given its position. When
we first learn this in Calculus I, we are restricted to the case where the position of the object
is given by a single variable function. In real life, however, objects move in two or three
dimensions. Now that we have the mathematical terminology to easily describe motion in
multiple dimensions, it is not difficult to generalize the ideas of velocity and acceleration.

Suppose a particle moves in such a way so that its position at time t is given by the
vector-valued function ~r(t). We will often assume that ~r takes values in R2 or R3 to be
realistic, although in principle we could work in Rn. The velocity of the particle is then

defined to be the derivative ~v(t) = ~r ′(t). Similarly, the acceleration of the particle is defined
to be ~a(t) = ~r ′′(t). Of special note is the speed of the particle, which is equal to |~v(t)|,
which is the norm of the vector v(t).
Examples.

• Suppose a particle moves in the plane with position function ~r(t) = 〈a cos t, b sin t〉
where a, b are positive real numbers. What is the velocity and acceleration of
this particle? What shape is the path of the particle? The velocity is ~v(t) =
〈−a sin t, b cos t, while the acceleration is 〈−a cos t,−b sin t. The shape is an ellipse
with axes of length 2a, 2b.
• Suppose a particle has acceleration given by ~a(t) = 〈1, et, sin t, and has initial

velocity and acceleration ~v(0) = 〈1, 0, 2〉, ~r(0) = 〈1, 1, 1〉. What is ~r(t)?
Like any sort of problem of a single-variable, we integrate twice, using the ini-

tial condition to determine what the constants of integration are at each step.
For example, integrating ~a(t) component-by-component gives ~v(t) = 〈t + C1, e

t +
C2,− cos t + C3〉. Since ~v(0) = 〈1, 0, 2〉, this means C1 = 1, C2 = −1, C3 = 3, so
~v(t) = 〈t+ 1, et − 1,− cos t+ 3〉. Integrate one more time to obtain

~r(t) =

〈
t2

2
+ t+ C1, e

t − t+ C2,− sin t+ 3t+ C3

〉
.

Using the initial condition ~r(0) = 〈1, 1, 1〉 gives the answer
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~r(t) =

〈
t2

2
+ t+ 1, et − t,− sin t+ 3t+ 1

〉
.

• A particle’s position vector is given by ~r(t) = 〈cos t, sin t, t2〉. What is its speed at
time t? At what time is the particle moving slowest? The velocity vector for this
particle is ~v(t) = 〈− sin t, cos t, 2t〉. Therefore, the speed of the particle is |~v(t)| =√

sin2 t+ cos2 t+ 4t2 =
√

1 + 4t2. To determine when the speed is a minimum,
we probably want to take a derivative of the above function and set that equal
to 0. However, taking derivatives of functions inside square roots can be rather
messy, so we make the observation that |~v(t)| is minimized at the same time that
|~v(t)|2 = 1 + 4t2 is minimized, which is easier to differentiate. We find that

d

dt
|~v(t)|2 = 8t

so that t = 0 is a critical point. As a matter of fact it is obvious that |~v(t)| is
minimal at t = 0, with |~v(0)| = 1, since 1 + 4t2 is a parabola with minimum at
t = 0.
• Suppose a particle moves in such a way so that its distance from the origin is

constant. (That is, the particle travels on a sphere with center at the origin.)
Show that its velocity is always orthogonal to its position. Let ~r(t) describe the
motion of an object: then ~r(t) has constant length. In particular, this means that
~r(t) · ~r(t) = |~r(t)|2 is constant, so its derivative is equal to 0. On the other hand,

(~r(t) · ~r(t))′ = 2~r · ~r ′ = 0,

which implies that ~r · ~r ′ = 0, or that ~r, ~r ′ are orthogonal, as desired.


