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Last time, we saw how to write equations for lines that lie in R3. In particular, a line is
completely specified by a point on that line and a direction vector; for example, given a point
P = (x0, y0, z0) and direction vector ~v = 〈a, b, c〉, we have the line ` given parametrically
by x = x0 + at, y = y0 + bt, z = z0 + ct, where t is any real number. There is also a way to
convert the parametric form of a line to a symmetric form, and vice versa.

Lines are one-dimensional objects in R3. We now seek to understand corresponding linear
two-dimensional objects in R3: that is, we seek to understand planes. A basic geometric
fact is that given any three non-collinear points in R3, there exists a unique plane which
passes through them. We now seek to understand how we can algebraically specify the
points which constitute a plane.

1. The equation of a plane

Notice that given any plane, there exists a nonzero vector which is orthogonal to any
vector which ‘lies’ in that plane: that is, given any two points P,Q on a plane, there is a

nonzero vector which is orthogonal to every vector ~PQ, regardless of the choice of P,Q.

For example, given the xy-plane, the vector 〈0, 0, 1〉 = ~k is orthogonal to every vector
that lies in the xy-plane, because all such vectors have z-coordinate equal to 0. Such a
vector, which must be nonzero, is called a normal vector to the plane. Notice that normal
vectors are not unique, because any nonzero scalar multiple of a normal vector still is a
normal vector. Nevertheless, this is the extent of the non-uniqueness, as it is possible to
show that any two normal vectors to a given plane are scalar multiples of each other.

Suppose we have a plane V , and we know that ~n = 〈a, b, c〉 is a normal vector for V .
How can we find an equation which determines V ? Let (x0, y0, z0) be an arbitrary but fixed
point on V , and let (x, y, z) be a general point on V . Then the vector 〈x−x0, y−y0, z−z0〉
is orthogonal to ~n: that is, their dot product is equal to 0. Then this yields

a(x− x0) + b(y − y0 + c(z − z0) = 0⇒ ax+ by + cz = d,where d = ax0 + by0 + cz0.

The equation ax + by + cz = d is called the scalar equation or implicit equation for the
plane V . Conversely, given an equation ax+ by+ cz = d, we know that this defines a plane
with normal vector ~n = 〈a, b, c〉. In summary, we can easily find the equation for a plane
given its normal vector and one point on the plane.

Suppose, on the other hand, that we are told other information about the plane; for
example, perhaps we know the coordinates of three points on the plane. How do we find
a normal vector to that plane? The answer is in the dot product! For example, if P,Q,R

are non-collinear on the plane, then the vectors ~PQ, ~PR certainly lie on the plane, so their
cross product, which is nonzero since P,Q,R are not all on the same line, will be normal to

both ~PQ, ~PR. It is not too hard to see that ~PQ × ~PR will be orthogonal to every vector
on the plane.

Examples.

• Find the implicit equation for the plane passing through (0, 0, 0), (1, 3, 2), and
(−2, 1, 4). In this case, we find that ~v1 = 〈1, 3, 2〉, ~v2 = 〈−2, 1, 4〉 are both vec-
tors which lie on the plane. Therefore, their cross product will be a normal vector
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for the plane:

~v1 × ~v2 =

∣∣∣∣∣∣
~i ~j ~k
1 3 2
−2 1 4

∣∣∣∣∣∣ = 〈10,−8, 7〉.

This vector is a normal vector for the plane. To determine d, we just plug in
any point into the formula d = ax0 + by0 + cz0. In this case, we use the point
(0, 0, 0), and find d = 0. Therefore, the implicit formula for this plane is given by
10x − 8y + 7z = 0. We can check that this answer is correct by plugging in the
three original points we were given and verifying that they satisfy the equation for
the plane. Also, notice that had we used either of the two points (1, 3, 2), (−2, 1, 4)
to determine d, we would have found d = 0 as well.
• Find the implicit equation for the plane passing through (1, 2,−2), (0, 2, 4), and

(−1, 3, 3). This time, we need to find two non-collinear vectors on this plane. For
example, ~v1 = 〈1− 0, 2− 2,−2− 4〉 = 〈1, 0,−6〉 and ~v2 = 〈1− (−1), 2− 3,−2− 3〉 =
〈2,−1,−5〉 work. Then we take their cross product:

~v1 × ~v2 =

∣∣∣∣∣∣
~i ~j ~k
1 0 −6
2 −1 −5

∣∣∣∣∣∣ = 〈−6,−7,−1〉.

Therefore, the plane has equation −6x − 7y − z = d, where d = −6(0) − 7(2) −
4 = −18, say. So we find that an implicit equation for this plane is given by
−6x− 7y − z = −18. If we want to, we can multiply this equation by any nonzero
scalar; for example, we can remove the negative sign by multiplying by −1 to get
the equation 6x + 7y + z = 18. It is clear that these two equations describe the
same set of points in R3.

2. Various problems with planes

There are a variety of geometric problems we can ask which involve planes in R3. For
example, we have already solved the problem of finding an equation for a plane given
information like three non-collinear points on the plane, or given a point on the plane and
a normal vector to the plane. We will briefly look at examples of other types of problems
we might encounter. Pay close attention to how the geometry and algebra interact in each
of these problems.

2.1. Intersection of planes with planes or lines. Suppose we have two planes V1, V2.
A natural question to ask is what their intersection looks like. Of course, if V1, V2 are equal,
then their intersection is just V1 = V2. So suppose we have two distinct planes. Then a bit
of thought will suggest that they must either be parallel (have no common intersection),
or intersect in a line. How can we distinguish between the two cases, and if two planes
intersect, how can we determine an equation for the line of intersection?

Notice that if two planes are identical or are parallel, their normal vectors must be
nonzero scalar multiples of each other. Therefore, we can detect whether two planes are
parallel or not by examining their normal vectors, which are easy to find if we are given
an equation which defines the two planes. If two planes have normal vectors which are not
scalar multiples of each other, then the two planes must intersect in a line. If two planes
have the same normal vectors (up to scalar multiplication), they are either identical or
parallel, and it is easy to distinguish the two cases, since two planes are parallel if their
defining equations are scalar multiples of each other.

Examples.
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• What is the intersection of 2x + 3y − 4z = 7, 6x + 9y − 12z = 21? Two normal
vectors for these planes are given by 〈2, 3,−4〉, 〈6, 9,−12〉 respectively. Notice that
these are scalar multiples of each other, so these two planes are either identical
or parallel. They are actually identical, since the second equation is just the first
equation times 3.
• What is the intersection of x + 2y − 3z = −2,−2x − 4y + 6z = 9? Again, these

two planes have normal vectors 〈1, 2,−3〉, 〈−2,−4, 6〉, respectively. These are scalar
multiples of each other. On the other hand, these two planes are not identical, since
the second equation is not equal to −2 times the first. Therefore, these two planes
are parallel.
• What is the intersection of x−2y−3z = 4,−x+3y+2z = −2? The normal vectors

for these two planes are 〈1,−2,−3〉, 〈−1, 3, 2〉, which are not scalar multiples of each
other, so they intersect in a line. How can we find an equation which defines this
line? Suppose we first want to determine a direction vector for this line. Since this
direction vector lies on both planes, it will be orthogonal to both normal vectors.
Therefore, we can find a direction vector by taking the cross product of the two
normal vectors for our planes. In this case, we have∣∣∣∣∣∣

~i ~j ~k
1 −2 −3
−1 3 2

∣∣∣∣∣∣ = 〈5, 1, 1〉.

Therefore, the line of intersection has the parametric equation x = 5t + x0, y =
t + y0, z = t + z0, where (x0, y0, z0) is any point on both planes. To find such a
point, we want to simultaneously solve the equations

x− 2y − 3z = 4

−x+ 3y + 2z = −2

There is a systematic way of solving systems of linear equations, such as this one,
which you can learn in a linear algebra class. The objective is to eliminate as many
variables as possible from each equation. For example, if we add the first equation
to the second (one can check this does not change the solution set), we obtain the
system

x− 2y − 3z = 4

y − z = 2

We have eliminated the x from the second equation. We can now eliminate y from
the first equation, by adding two copies of the second equation to the first:

x+ 0y − 5z = 8

y − z = 2

At this point, we can let z = t, and find that x = 8 + 5t, y = 2 + t. Therefore, the
line of intersection is given parametrically by x = 8+5t, y = 2+t, z = t. Notice that
when t = 0, we get a point (8, 2, 0) on both planes, and that this general method of
solving linear equations was also able to recover the cross product of the two initial
normal vectors.
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What about the intersection of a line and a plane? Again, some more thought shows that
such an intersection must either be empty (no intersection), a point, or a line. In the case
where the intersection is empty or the entire line, the direction vector for that line must
also lie on the plane, and hence will be orthogonal to the normal vector for the plane. On
the other hand, if the intersection point is a point (ie, the direction vector is not orthogonal
to the normal vector for the plane), we can solve for the intersection point by plugging in
the parametric equation for the line into the equation for the plane.

Examples.

• Find the intersection between 2x + y − 3z = 4 and x = t + 3, y = t − 2, z = t. A
direction vector for the line is given by 〈1, 1, 1〉. We see that this is orthogonal to
the normal vector 〈2, 1,−3〉 for the plane, so the intersection is either empty or the
entire line. To determine which, we simply plug in the equation for the line into the
equation for the plane, and obtain 2(t+3)+(t−2)−3t = 4⇒ 4 = 4. This indicates
that the entire line lies on the plane. Also, notice that we could have obtained this
information by skipping directly to the step where we plugged in the parametric
equation for the line into the equation for the plane. Had we considered a line like
x = t + 2, y = t − 2, z = t, say, then plugging in this parametric equation would
have given 2 = 4, which is always false, so this line does not intersect the plane
2x+ y − 3z = 4 at any point.
• Find the intersection between −x+ y+ z = 3 and x = 2t− 3, y = t+ 1, z = −t+ 2.

We plug in the parametric equation for the line into the equation for the plane and
obtain −(2t − 3) + (t + 1) + (−t + 2) = 3 ⇒ −2t + 6 = 3 ⇒ t = 3/2. Therefore,
the point of intersection is given by (0, 5/2, 1/2). We can check that this answer is
correct by verifying that this point lies on both the plane and line in question.

2.2. The angle between two planes. Suppose two planes V1, V2, with normal vectors
n1, n2 intersect in a line. Then we call the acute (or possibly right) angle between these
two planes the angle between the two planes. Unlike angles between vectors, this angle is
always acute or right: that is, between 0 and π/2 radians. Two intersecting planes form
two angles, which are supplementary to each other, so we always choose the angle which is
not obtuse.

A bit of thought will show that this angle is the same as the angle formed by the two
normal vectors n1, n2, except possibly that if the angle between n1, n2 is obtuse, then we
need to take the supplement of that angle. (This is equivalent to switching one of the
normal vectors with its negative and re-calculating the angle.)

Examples.

• Find the angle between −x+ 2y − 3z = 42, 3y + 2z = −10. These two planes have
normal vectors ~n1 = 〈−1, 2,−3〉, ~n2 = 〈0, 3, 2〉 respectively. Notice that n1 · n2 = 0;
therefore, the angle θ between these two vectors is given by cos θ = 0 ⇒ θ = π/2.
This means that the two planes have an angle of π/2 between them, and hence are
orthogonal to each other.
• Find the angle between 2x + 3y + z = 5, x − y − z = 4. Two normal vectors are
~n1 = 〈2, 3, 1〉 and ~n2 = 〈1,−1,−1〉. The angle between these two vectors is given
by θ in the equation

cos θ =
~n1 · ~n2
|n1||n2|

=
−2√
14
√

3
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Therefore, θ = arccos−2/
√

42. However, this angle is obtuse (since cos θ < 0), so
to find the angle between the two planes we need to take the supplementary angle.
This is equivalent to replacing one of n1, n2 with its negative, so the angle between
these two vectors is arccos 2/

√
42.

2.3. The distance of a point from a plane. We conclude by answering a natural
geometric question which arises in a variety of contexts. Suppose we have a point, say
P = (x1, y1, z1), and a plane V : ax+ by+ cz = d. What is the distance of P from V ? The
distance from a point to a plane is defined to be the shortest distance from the point to
any point on the plane. In particular, this is achieved when we find a point R on the plane

such that ~PR is orthogonal to the plane; that is, parallel to a normal vector for V .
In general, it is difficult to choose R to ensure that this happens. However, suppose we

select an arbitrary point Q on V , which is always easy to do. Then although ~PQ is not
orthogonal to V , the projection of this vector onto ~n = 〈a, b, c〉 is orthogonal to V , and its
length is the distance of P from V . Therefore, to calculate the distance of a point from
a plane, we need only know the coordinates of the point P we are interested in, a normal
vector ~n for the plane, and any arbitrary point Q on the plane. The (absolute value of the)

scalar projection of ~PQ onto ~n is then the distance of P from V .

Example. Find the distance of P = (2, 1,−2) to V : x+ 2y+ 3z = 4. We begin by noting
that ~n = 〈1, 2, 3〉 is a normal vector for the plane in question. Also, the point Q = (0, 2, 0)

lies on this plane. Therefore, ~PQ = 〈−2, 1, 2〉. The distance is then given by the absolute
value of

~PQ · ~n
|~n|

=
6√
14
.

Therefore, the distance is 6/
√

14.


