MATH 8 CLASS 16 NOTES, 10/27/2010

We have defined vectors, defined some basic operations on vectors (vector addition and
scalar multiplication), have geometric interpretations of these operations, and also talked a
bit about the length of a vector. We want to continue our study of the geometry of vectors
and three-dimensional space. A critical tool in the study of vectors is an operation known
as the dot product. Its definition is straightforward, but its applications are surprisingly
versatile.

1. DOT PRODUCT: DEFINITION, BASIC PROPERTIES

Let ¥, & be two vectors in R", with coordinates (vy, ..., v,), (w1,...,wy). The dot product
of ¥ and 10/ is defined to be the real number

Vw1 + ...+ vw, = U - W.

In other words, we just multiply coordinates componentwise and then add them up. The
following are some basic properties of dot products, which you can check for yourself us-
ing the definition. They basically suggest that the dot product obeys many of the same
properties that usual multiplication of numbers obey.

o (U) +02) W=7 W+ T

e If ¢ is a scalar, then (c¥) - W = ¥+ (cwW) = ¢(V - W).
o V-7 = |2

Examples.

Let 7= (2,3,5). Then ¢ -7 = 2% 4+ 32 4+ 52 = 38.

Let v = (—2,5),W = (5,2). Then ¥-w=-2-54+5-2=0.
Let v =(1,3),w = —21. Thenv- W =1--243-1=1.
The vector i is a unit vector if and only if @ -4 = 1.

The definition of dot product might seem somewhat arbitrary, but it turns out to have a
strong geometric significance. Already we see that taking the dot product of a vector with
itself yields the square of its length, which is a geometric property of a vector.

2. DOT PRODUCT: DETERMINING THE ANGLE BETWEEN TWO VECTORS

One of the key properties of the dot product is that it provides a way to calculate the angle
between two vectors. In particular, we will constantly use the fact that the dot product
provides a quick way to determine whether two vectors are perpendicular to each other.
(We may also sometimes use the term orthogonal, which in this context is synonymous with
perpendicular.)

Consider two vectors @, l_;, and the third vector @ = @ — b. These three vectors form a
triangle; let 6 be the angle between the vectors @, b. In particular, 0 < 6 < 7.

A formula from geometry, called the law of cosines, which is a generalization of the
Pythagorean Theorem, states that

@ = [al? + B — 2al5] cos .

If we use the fact that 7|2 = ¥~ @, this formula becomes
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(@—Db)-(@—b)=a-a+b-b—2|d||b| cos.
If we expand the left hand side, we get

@-d+b-b—2i-b=a-a+b-b— 2|a|b|cosb.

Solving for cos @ gives the formula we are interested in:

I
S

cosf = =.
|al[b]

One can check that this formula holds true even if &, b are collinear, so that 8 =0 or 7. It
is clear from this formula that |@ - b| = |@||b| if and only if @,b are scalar multiples of each
other, or are collinear.

So the dot product provides a quick way of determining the cosine of the angle between
two vectors. In particular, because cos 7/2 = 0, ¥~ = 0 if and only if ¥/, &/ are perpendicular
to each other.

Examples.

e Find the angle between the vectors (3,5,2) and (4, —2, —1). We calculate their dot
product to be 3-4+5-(—2)+2-(—1) = 0, so these vectors are perpendicular to
each other.

e Find the angle between the vectors (v/3, 1) and (0, 5). We calculate their dot product
to be 5, which by itself is not enough to answer this question, so we also calculate
the norms of these vectors to be 2 and 5. Therefore cos§ = 5/(2-5) = 1/2, so the
angle between these two vectors is 7/3, or 60°.

e Suppose U, W are two vectors with length 2,7 and form an angle of 120° between
them. What is ¢-@? We can use the previous formula, in the form 7-@ = |¥/]|]| cos 6,
to find v-w=2-7-cos120° = —T7.

The orthogonality detecting property of the dot product is surprisingly versatile. For
example, suppose we want to calculate the distance of a point P, say in R?, from a line
£. For simplicity, let us suppose that ¢ passes through the origin. This distance is the
length that P travels if we perpendicularly project P onto the line ¢. If we think of P as
giving the tip of a vector ¥, and we think of the line ¢ as containing the nonzero vector w
(notice that we have lots of different possible choices for @), then what we want to do is
decompose ¥ into two pieces, called ¥l and 7+, which are two vectors which sum to @, such
that @~ - @ = 0. Then the distance of P from ¢ will just be the length of 7. We sometimes
call ¥l the (vector) projection of ' onto w. Notice that &l is actually parallel to 1.

How do we figure out what ¢ is from @, @w? We know that o*, #ll, and @ form a right-
angled triangle with ¥ as hypothenuse. Let 6 be the angle between @ and #l. Because & is
in the same direction as ¥, the angle between ¥ and @'l is the same as the angle between @
and . Then we know that

—

U - W

cost = ——.
|0] ||

On the other hand, the length of &l is |0] cos 8, which by the above formula equals
xn

‘_’|'

w
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This is sometimes called the scalar projection of ¥ onto w, and tells you the length of the
part of ¥ which points in the same direction as . Notice that this number can be negative,
if ¥, form an angle greater than 90°.

To find a formula for ll, all we need to do is multiply the scalar projection (which is a
scalar, not a vector) by a unit vector pointing in the same direction as w. We know how
to calculate this; therefore, we get the formula

g _v-w o w
vt = S T S
@] |

|
This also gives a formula for 7+, since 7+ + ¢l = 7. We sometimes write vl as projzv, with
the notation indicating that we are projecting the vector ¥ onto .

Examples.

e Suppose we want to project a vector ¥ onto a unit vector @. Because |d| = 1, the
above formula becomes

proj;v = (U - )i,
which evidently is simpler than the more general formula. However, remember, if
you want to use this formula, @ MUST be a unit vector!
e In R2, the vectors 7, are the unit vectors (1,0),(0,1), respectively, and one has
(x,y) = zi +yj. Let’s calculate the projection of 7 = (x,y) onto i 7.
In the former case, using the formula from the previous example, proj:v' = ((z,)-
(1, O>)Z: xi, which is what we expect. One can similarly calculate projfﬁ = yj.

In R3, 7§ = (1,0,0),} = <O,1,0>,E = (0,0,1). Strictly speaking, these i,j are
different from those in the R? case, but the context should make it clear what
dimensional space ;,j live in should we choose to use this notation.

e Notice that proj;U does not change even if we multiply @ by a nonzero scalar.
Indeed, we see that replacing @ with cw, where ¢ # 0, introduces a factor of ¢? in
the numerator and a factor of ¢? in the denominator, which end up canceling out.

e Let’s check that 7+, calculated using the formula o+ = @ — @ll, really is orthogonal
to .

The main tool for detecting orthogonality is to take a dot product and check
whether that product equals 0 or not, so let’s calculate o - :

ey
g

H =G d=vw - Y

- =0-wW—v-W=0.

|

||
So " is orthogonal to 0, as claimed!

e Compute the projection of & = (5,0) onto the vector @ = (2,1). Using the previous
formula for projzv,

We can use this information to calculate the distance from (5,0) to the line y =
x/2. Notice that the vector (2,1) lies on the line y = /2 (ie, its coordinates
satisfy y = x/2), so that projzU will lie on this line as well. Then we know that
vt = (5,0) — (4,2) = (1,—2) is the component of ¥ orthogonal to 1, and that the
distance from @ to y = 2/2 is given by the length of this vector. Since |t = v/5,
the distance of (5,0) to the line y = /2 is V/5.
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Alternatively, you could have calculated the distance of (5,0) to the line y = /2
using techniques from single variable calculus, by trying to minimize the distance
function of (5,0) to a generic point on y = x/2. This is a good exercise to do.
Let’s think about how we might describe a plane in R? using algebraic equations.
Let V be a plane, which for simplicity, passes through the origin. A bit of geometric
visualization should convince you that there is exactly one line passing through the
origin which is perpendicular to the plane. For instance, if V' is the zy plane, then
this line would be the z-axis.

Select a nonzero vector ¥ = (a, b, ¢) which is on this line. The fact that this line
is perpendicular to V is equivalent to saying that this line is perpendicular to any
vector which lies on V| which is equivalent to saying that ¢’ is orthogonal to any
Z = (x,y,z) on V. In terms of the dot product, this means that

v-Z=0%ar+by+cz=0.

So the formula for a plane passing through the origin is defined by a single linear
equation in the three variables z,y, z, whose coefficients a, b, ¢ are the components
of a nonzero vector (a, b, c) orthogonal to the plane. We’ll come back to questions
about planes in a few days.

Vectors and the dot product have a natural interpretation in physics. Velocity,
displacement, acceleration, and force are all expressed using the idea of vectors,
because these not only have a magnitude, but also a direction.

The dot product is well-suited for calculating work. If you have had physics, you
might know that work is defined to be force times distance moved, at least if the
force is in the same direction as the direction of motion. In contrast, a force which
is orthogonal to a direction of motion of an object does no work on that object.
More generally, W = F. Z, where Fis force, and & is displacement.

For example, suppose a force (such as a rope someone is pulling) is exerted at a
60° angle above the horizontal on an object which is moving in a horizontal direction.
If this force has a magnitude of 100 N and the object travels 10 m, then the total
amount of work is F'- &, which we can calculate using the formula F -7 = |F||Z| cos 0.
In this case, W =100-10-1/2 = 500 J.



