
MATH 8 CLASS 13 NOTES, 10/20/2010

In the last class, we saw how to evaluate integrals with various products of trigonometric
functions. We will now consider a special class of substitutions which involve trigonometric
functions, which will allow us to evaluate other types of integrals.
Consider the integral

∫ √
1− x2 dx. None of the methods we currently know will allow us

to evaluate this integral. However, if we make a substitution x = sin θ (this is perhaps more
accurately a reverse substitution), we then have dx = cos θdθ. We restrict θ to lie in the
interval [−π/2, π/2], and our integral becomes∫ √

1− x2 dx =

∫ √
1− sin2 θ cos θ dθ =

∫
| cos θ| cos θ dθ =

∫
cos2 θ dθ

In the last step, we are allowed to remove the absolute value signs, because we restrict
θ to lie in the interval [−π/2, π/2], in which cos is always nonnegative. We now use our
expertise in evaluating trigonometric integrals to calculate∫

cos2 θ dθ =

∫
1 + cos 2θ

2
dθ =

θ

2
+

sin 2θ

4
+ C

At this point, we need to replace all the θs with xs. To do so, we need to be able to
evaluate sin 2θ. We use the identity sin 2θ = 2 cos θ sin θ, but this tells us that we need to
be able to write cos θ in terms of x. Since x = sin θ, we can think of θ as an angle in a
right angled triangle, whose opposite side has length x and hypotenuse has length 1. Then
the Pythagorean Theorem tells us that the adjacent side has length

√
1− x2, and therefore

cos θ =
√

1− x2. Therefore, we have

θ

2
+

sin 2θ

4
+ C =

θ

2
+

sin θ cos θ

2
+ C =

arcsinx

2
+
x
√

1− x2
2

+ C

More generally, we can handle integrals such as
∫ √

a2 − x2 dx, by using the substitution
x = a sin θ. Then we obtain∫ √

a2 − x2 dx =

∫ √
a2 − a2 sin2 θ(a cos θ) dθ =

∫
a2 cos2 θ dθ

which we can evaluate as before:∫
a2 cos2 θ dθ = a2

(
θ

2
+

sin 2θ

4

)
+ C = a2

(
θ

2
+

sin θ cos θ

2

)
+ C

Since θ = arcsinx/a, to evaluate cos θ, we draw a right angle triangle with hypotenuse

a and opposite side x, and the remaining side has length
√
a2 − x2. Therefore cos θ =√

(a2 − x2)/a, and replacing all the θs with xs in the above gives

a2

(
arcsin(x/a)

2
+
x
√
a2 − x2
2a2

)
+ C

Example. Use the integral we calculated above to compute the area of the ellipse defined
by

1
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x2

a2
+
y2

b2
= 1

where a, b are positive real numbers. Recall that this equation defines an ellipse with axes
of length 2a, 2b. To calculate the area of this ellipse, we focus on the quarter of the ellipse
which lies in the first quadrant. We find that the boundary of the ellipse in the first
quadrant is described by the function

y2 = b2
(

1− x2

a2

)
⇒ y = b

√
1− (x2/a2) =

b

a

√
a2 − x2

To evaluate the area bounded by this segment of the boundary, we calculate the definite
integral of this function from 0 to a:∫ a

0

b

a

√
a2 − x2 dx

If we use the integral we calculated previously, we find this is equal to

b

a
· a2

(
arcsin(x/a)

2
+
x
√
a2 − x2
2a2

)∣∣∣a
0

=
b

2a

a2π

2
=
abπ

4

(Notice that a lot of the terms disappear for x = 0, a.) Since we calculated the area of a
quarter of the ellipse in question, this shows that the area of an ellipse with axes of length
2a, 2b is abπ. In the case where a = b = r, where the ellipse is a circle, we recover the
formula A = πr2 for the area of a circle.
The method of trigonometric substitution can also be useful if you forget formulas for
integrals of arcsin, for instance.

Example. Calculate ∫
1√

1− x2
dx

If we see a
√

1− x2, or more generally
√
a2 − x2, it is a good bet that trigonometric sub-

stitution might work. In this case, take x = sin θ, dx = cos θ dθ, so that the integral in
question becomes∫

1√
1− x2

dx =

∫
1

cos θ
cos θ dθ =

∫
dθ = θ + C = arcsinx+ C

Here are two other integrals which look like x = sin θ is a good substitution.

Examples.

• Evaluate ∫
x√

1− x2
dx

We could apply the substitution x = sin θ, but notice that the simpler u-substitution
u = 1−x2 would work as well, because we have a copy of x available. Even though
trigonometric substitution would work in this situation (you should work out this
integral using this method), a simpler method is also available. Letting u = 1− x2,
we have du = −2x dx, so∫

x√
1− x2

dx =

∫
−1

2
· 1√

u
du =

−1

2
2
√
u+ C = −

√
u+ C = −

√
1− x2 + C
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This is considerably less involved than using a trigonometric substitution.
• Evaluate ∫

x2√
1− x2

dx

This integral looks very similar to the previous integral, but a simple u-substitution
would fail here. However, we can still use trigonometric substitution. If we let
x = sin θ, then this integral becomes

∫
x2√

1− x2
dx =

∫
sin2 θ

cos θ
cos θ dθ =

∫
sin2 θ =

∫
1− cos 2θ

2
dθ

If we evaluate this integral and keep track of what sin θ, cos θ are in terms of x,
using the same technique of drawing a right angle triangle as earlier, we obtain the
expression∫

1− cos 2θ

2
dθ =

θ

2
− (sin θ)(cos θ)

2
+ C =

1

2
(arcsinx− x

√
1− x2) + C

So far, we have a good idea how to handle an integral like
∫ √

a2 − x2 dx. How about the

related integrals
∫ √

x2 + a2 dx,
∫ √

x2 − a2 dx? Just like how we applied the substitution
x = a sin θ in the original integral to eliminate the square root sign, we can use the identity
tan2 θ + 1 = sec2 θ to eliminate the radicals using an appropriate substitution in the latter
two integrals:

Examples.

• Calculate
∫

1√
x2+a2

dx. We make the substitution x = a tan θ, so that dx =

a sec2 θ dθ. Then the integral becomes∫
1√

x2 + a2
dx =

∫
1

a sec θ
a sec2 θ dθ =

∫
sec θ dθ = ln | sec θ + tan θ|+ C

At this point, we need to convert all the expressions in θ to expressions in x, so we
again draw a right angle triangle with suitable lengths. This time, tan θ = x/a, so
we draw a right angle triangle with opposite side x and adjacent side a, so that the
hypotenuse has length

√
x2 + a2. Therefore,

sec θ =

√
x2 + a2

a
so we can substitute this into the integral we calculated to obtain

ln

(√
x2 + a2

a
+
x

a

)
+ C

(Why are we allowed to remove the absolute value sign?)

• Sometimes we might not see an expression like
√
x2 − a2, but we could have a

very closely related expression like
√

4x2 − 1. For example, suppose we wanted to
calculate the integral ∫ √

4x2 − 1

x
dx

This looks like we should make some sort of substitution like x = sec θ, although
the presence of the 4 will mess things up. Nevertheless, if we instead made the
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substitution x = 1/2 · sec θ, we can get rid of the 4. We have dx = 1/2 sec θ tan θ dθ,
so the integral becomes∫ √

sec2 θ − 1

1/2 · sec θ
· 1/2 sec θ tan θ dθ =

∫
tan2 θ dθ

Notice that we write
√

sec2 θ − 1 = tan θ, without absolute value signs! The reason
we are allowed to do this is because we will only let θ range through the values
(0, π/2) and (π, 3π/2) in the substitution x = 1/2 sec θ. This range still covers all
the numbers |x| ≥ 1, while keeping tan θ always nonnegative.

We know how to integrate tan2 θ; we rewrite this integral as∫
sec2 θ − 1 dθ = tan θ − θ + C

Again, we have to reconvert all the expressions in theta to expressions in x. We
have 2x = sec θ, so we draw a right angle triangle with hypotenuse of length 2x
and adjacent side of length 1. Then the opposite side has length

√
4x2 − 1. In

particular, tan θ =
√

4x2 − 1, and θ = arcsec 2x = arccos 1/(2x). (Why is this last
equality true?)

Putting this back into our answer, we find that the integral in question is equal
to √

4x2 − 1− arccos 1/(2x) + C

Finally, we mention that it is also possible to factor 4 out of the expression
√

4x2 − 1,
to obtain the expression 2

√
x2 − (1/2)2. Of course, one would still make the sub-

stitution x = 1/2 · sec θ.

We conclude with an example which on the surface does not seem like it can be solved using
trigonometric substitution, but using the algebraic technique of “completing the square”,
does allow us to solve it.
Example. Calculate ∫

1√
−3 + 4x− x2

dx

We do not have an expression of
√
a2 − x2, or the other two related expressions, in this

integral. However, if we ‘complete the square’ in −3 + 4x− x2, we obtain an expression

−3 + 4− 4 + 4x− x2 = 1− (x2 − 4x+ 4) = 1− (x− 2)2

Therefore, our integral is equal to ∫
1√

1− (x− 2)2
dx

This looks a lot like
√

1− x2; make a u-substitution u = x−2. We then obtain the integral∫
1√

1− u2
du

This can be solved using the standard trigonometric substitution techniques, or if you
remember, this is also the derivative of arcsinu. Therefore, the integral in question is equal
to

arcsin(x− 2) + C


