
MATH 8 CLASS 12 NOTES, 10/18/2010

Today, we will be interested in learning how to calculate integrals which involve various
products of trigonometric functions. We will make extensive use of trigonometric identities
to transform integrands to expressions where we can easily use u-substitution. Before
embarking on the use of identities per se, let us recall the types of trigonometric integrals
for which we can use u-substitution.

Examples.

• Calculate
∫

sin3 x cosx dx. The substitution u = sinx, du = cosx dx seems like
the natural substitution to make here. This transforms the integral to

∫
u3 du =

u4/4 + C = sin4 x/4 + C.
• Calculate

∫
cos5 x sinx dx. This example isn’t much different from the previous

example – make the substitution u = cosx, du = − sinx dx, which transforms the
integral to

∫
−u5 du = −u6/6 + C = − cos6 x/6 + C.

In both these examples, we could easily integrate a power of cos or sin as long as one term
of the other trigonometric function was present in the integrand. However, how do we
evaluate an integral like

∫
cos5 x sin3 x dx, where there may be high powers of both cos and

sin? The answer lies in the fundamental trigonometric identity

sin2 x + cos2 x = 1

This is a very important identity, not just for evaluating trigonometric integrals, but in
mathematics in general, and is nothing more than the fact that (cosx, sinx) is a point on
the unit circle, which therefore has distance 1 from the origin.

1. Odd powers of sin or cos

If we have either an odd power of sin or cos in an integral of the form
∫

sinm x cosn x dx,
then we can eliminate all but one power of that trigonometric function by applying the
identity sin2 x + cos2 x = 1. We’ll calculate some examples:

Examples.

• Calculate
∫

sin4 x cos3 x dx. Transform all powers of cos except one into sins by
using sin2 x + cos2 x = 1 in the following way: since cos2 x = 1 − sin2 x, replace
cos2 x in the expression above to obtain∫

sin4 x cos3 x dx =

∫
sin4 x(1− sin2 x) cosx dx

After expanding the terms with sin, we obtain an integral we can evaluate using
u-substitution, with u = sinx:

∫
sin4 x(1− sin2 x) cosx dx =

∫
u4 − u6 du =

u5

5
− u7

7
+ C =

sin5 x

5
− sin7 x

7
+ C.

• Calculate
∫

sin6 x cos5 x dx. Just as in the previous example, we eliminate all but
one copy of cosx by using cos2 x = 1− sin2 x:

1
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∫
sin6 x cos5 x dx =

∫
sin6 x(1− sin2 x)2 cosx dx

Notice that we need to expand (1 − sin2 x)2 at some point. Nevertheless, we can
make the u-substitution u = sinx, du = cosx dx right now to obtain∫

sin6 x(1− sin2 x)2 cosx dx =

∫
u6(1− u)2 du =

∫
u6 − 2u8 + u10 du

=
u7

7
− 2u9

9
+

u11

11
+ C =

sin7 x

7
− 2 sin9 x

9
+

sin11 x

11
+ C

• If the power of sin is odd, we can replace every copy of sinx except one using
sin2 x = 1− cos2 x. For example, consider the integral

∫
sin3 x cos2 x dx. Then this

identity yields∫
sin3 x cos2 x dx =

∫
sinx(1− cos2 x) cos2 x dx

The u-substitution u = cosx, du = − sinx dx gives

∫
sinx(1− cos2 x) cos2 x dx = −

∫
u2 − u4 du = −u3

3
+

u5

5
+ C = −cos3 x

3
+

cos5 x

5
+ C.

• If both sin and cos have odd powers, then you can choose to eliminate all but one
copy of either function. However, in practice, you probably want to eliminate all but
one power of the term which has a lower power, to minimize the amount of polyno-
mial expansion you have to do. For example, consider the integral

∫
sin5 x cos3 x dx.

Then we might choose to eliminate all but one copy of cosx:∫
sin5 x cos3 x dx =

∫
sin5 x(1− sin2 x) cosx dx

Make the u-substitution u = sinx, du = cosx dx, to obtain

∫
sin5 x(1− sin2 x) cosx dx =

∫
u5 − u7 du =

u6

6
− u8

8
+ C =

sin6 x

6
− sin8 x

8
+ C.

• In the previous example, you might be wondering what would have happened had
we instead chosen to eliminate all but one copy of sin. Then we would obtain
some sort of final answer in terms of a polynomial in cos, which certainly does not
look like the answer in the previous example. Can you think about why these two
answers are actually equal? As a simpler example of this phenomenon, consider the
integral

∫
sin3 x cosx dx. The simple way to do this integral is just to let u = sinx,

which give us an answer of sin4 x/4+C. However, suppose we make the substitution
sin2 x = 1− cos2 x. Then this integral becomes

∫
(1− cos2 x) cosx sinx dx = −

∫
(1− u2)u du = −u2

2
+

u4

4
+C == −cos2 x

2
+

cos4 x

4
+C.

Even though this doesn’t look like the simpler answer we got, closer inspection
will show that they actually are equal. For example, if we take the difference of the
answers, we obtain

sin4 x− cos4 x

4
+

cos2 x

2
+C =

(sin2 x + cos2 x)(sin2 x− cos2 x)

4
+

cos2 x

2
+C =

sin2 x− cos2 x

4
+

cos2 x

2
+C.
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At this point, we use sin2 x = 1− cos2 x to convert everything to cos:

sin2 x− cos2 x

4
+

cos2 x

2
+ C =

1− 2 cos2 x

4
+

cos2 x

2
+ C =

1

4
+ C = C

Therefore, these two seemingly different answers really are equal!

2. Even powers of sin and cos

What happens if we have an integral with even powers of both cos and sin? For example,
the seemingly simple integral

∫
sin2 x dx falls under this category. Then a use of sin2 x =

1 − cos2 x does no good, because we end up with other integrals we do not know how to
evaluate. To solve integrals like this requires a new trigonometric identity. We can use the
identity cos 2x = 2 cos2 x− 1 = 1− 2 sin2 x to obtain the identities

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2
, sinx cosx =

sin 2x

2
These identities provide the transformations we need to solve integrals with even powers of
both sin and cos in them.

Examples.

• Evaluate
∫

sin2 x dx. We apply the identity above to transform this integral:∫
sin2 x dx =

∫
1− cos 2x

2
dx =

x

2
− sin 2x

4
+ C.

• Sometimes you need to use the above identities more than once. For example,
consider the integral

∫
cos4 x dx. Then making the substitution with cos2 x above

yields∫
cos4 x dx =

∫
(1 + cos 2x)2

4
dx =

∫
1 + 2 cos 2x + cos2 2x

4
dx

At this point, we can integrate the first two terms in the sum in the last integrand,
but to integrate cos2 2x requires us to use the above identity again, with 2x in place
of x. This yields

∫
1 + 2 cos 2x + cos2 2x

4
dx =

∫
1 + 2 cos 2x + 1+cos 4x

2

4
dx =

3

8
x +

sin 2x

4
+

sin 4x

32
+ C.

where we skipped several simplification steps at the end. Repeated applications of
identities like cos2 x = (1 + cos 2x)/2 can lead to fairly messy expressions, so make
sure to stay organized when solving problems like this.

3. Integrals with tan, sec

We now consider integrals which have various powers of tan and sec in them. The basic
integration formulas we will use here are∫

sec2 x dx = tanx + C,

∫
tanx secx dx = secx + C

In addition, it is occasionally useful to know the not quite as elementary formulas∫
tanx dx = ln | secx|+ C,

∫
secx dx = ln | secx + tanx|+ C

The basic trigonometric identity we will use here now is
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tan2 x + 1 = sec2 x

This is easily obtained from sin2 x + cos2 x = 1 by dividing both sides by cos2 x.
Because the derivatives of tanx, secx are sec2 x, tanx secx respectively, the strategy behind
using this identity will be to obtain integrals whose integrands are either tank x sec2 x or
seck x(secx tanx), because we can then apply the u-substitutions u = tanx, u = secx
respectively.

Examples.

• Evaluate
∫

tan3 x sec4 x dx. If we see an even number of powers of sec, we should
eliminate all but sec2 x of those powers. In this example, we apply sec2 x = 1+tan2 x
to obtain ∫

tan3 x sec4 x dx =

∫
tan3 x(1 + tan2 x) sec2 x dx

Make the u-substitution u = tanx, du = sec2 x dx to obtain

∫
tan3 x(1 + tan2 x) sec2 x dx =

∫
u3 + u5 du =

u4

4
+

u6

6
+ C =

tan4x

4
+

tan6x

6
+ C

• Evaluate
∫

sec3 x tan3 x dx. In this example, we have an odd number of tan in the
integrand, and what we want to do is convert all of those except one copy of tanx
into sec. In this case, we obtain∫

sec3 x tan3 x dx =

∫
sec3 x(sec2 x− 1) tanx dx

At this point, we make the u-substitution u = secx, du = secx tanx dx. One copy
of the secx needs to go into the du, so we obtain

∫
sec3 x(sec2 x− 1) tanx dx =

∫
u4 − u2 du =

u5

5
− u3

3
+ C =

sec5 x

5
− sec3 x

3
+ C

• Odd powers of tan, by themselves, can be evaluated by repeatedly using tan2 x =
sec2 x− 1. For example, consider

∫
tan3 x dx. One application of the above identity

gives

∫
tan3 x dx =

∫
(sec2 x− 1) tanx dx =

tan2 x

2
− ln | secx|+ C

• Even powers of tan, by themselves, can also be handled similarly. For example, on
the integral

∫
tan6 x dx, one application of tan2 x = sec2 x− 1 gives

∫
tan6 x dx =

∫
tan4 x(sec2 x− 1) dx =

tan5 x

5
−

∫
tan4 x dx

We can evaluate
∫

tan4 x dx by using this same method to reduce to an integral
with

∫
tan2 x dx =

∫
sec2 x− 1 dx = tanx− x.

• Odd powers of secx are substantially harder, although still solvable. For example,
we can use the formula from exercise 50 of Chapter 8.1, which provides a ‘reduction’
formula for

∫
secn x dx by using integration by parts:
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∫
secn x dx =

tanx secn−2 x

n− 1
+

n− 2

n− 1

∫
secn−2 x dx

We can repeatedly apply this formula until we obtain
∫

secx dx = ln | secx+tanx|+
C. For example, this formula applied to

∫
sec3 x dx gives∫

sec3 x dx =
tanx secx

2
+

1

2

∫
secx dx =

tanx secx

2
+

ln | secx + tanx|
2

+ C

Integrals with cotx, cscx can be handled in a manner similar to integrals with tanx, secx
by virtue of the identity cot2 x + 1 = csc2 x, and the fact that the derivatives of cotx, cscx
are − csc2 x,− cotx cscx, respectively.


