
MATH 8 CLASS 11 NOTES, 10/15/2010

We will now completely change topics and spend a few classes studying additional integra-
tion techniques. Recall that integration is the art of finding an antiderivative of a function.
Unlike differentiation, which is relatively ‘easy’, integration is very hard. For example, it is
easy to differentiate a function like ex cosx, but how do you integrate this function?
We begin with a quick review of u-substitution, which is the integration analogue of the
chain rule for differentiation.

1. A review: u-substitution

Recall that the derivative of a composition of functions f(g(x)) is f ′(g(x))g′(x); this is
commonly called the chain rule. Therefore, the integral of f ′(g(x))g′(x) will be f(g(x))+C.
If we are given an integral whose integrand is in the form f ′(g(x))g′(x), then we can reduce
the integral to (hopefully) a simpler integral, by means of a substitution u = g(x):∫

f ′(g(x))g′(x) dx =

∫
f ′(u)du = f(u) + C = f(g(x)) + C

Pay close attention to the change from dx to du, which is obtained by replacing g′(x) dx
with du. That you should make this replacement is suggested by the Leibniz notation,
where

du

dx
= g′(x)

suggests that ′du = g′(x) dx.
To use this rule effectively requires that you be able to recognize derivatives of functions
quickly. Unlike differentiation, there is no easy mechanical procedure you can apply to eval-
uate integrals, and you will have to develop experience by solving many different problems.
Let us look at some relatively simple applications of u-substitution.
Examples.

• Evaluate
∫

(cos(sinx)) cosx dx. In this problem, we see that there is a composite
function cos(sinx), which strongly suggests that we should make a substitution
u = sinx. Furthermore, the fact that there is a cosx outside the composite function,
which is the derivative of u = sinx, confirms the intuition that we should use u-
substitution. Since u = sinx, du = cosx dx. Using u-substitution yields

∫
(cos(sinx)) cosx dx =

∫
cosu du = sinu + C = sin(sinx) + C

At the end of the problem, make sure to replace all the us with g(x), since the
initial integral is phrased in terms of the variable x.

• Evaluate
∫
xe−x

2
dx. Again, we see an −x2 in the exponent of an exponential, which

strongly suggests that we should try u = −x2. (One could also use u = x2.) Then
du = −2x dx, so using the u-substitution yields∫

xe−x
2
dx =

∫
−eu

2
du = −eu

2
+ C = −e−x

2

2
+ C

1
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Notice that if the integrand were instead e−x
2

instead of xe−x
2
, then u-substitution

would fail, and as a matter of fact, it is not possible to integrate e−x
2

in terms of
any functions we are familiar with.

• Sometimes finding the correct u-substitution can be non-trivial. Evaluate the inte-
gral ∫

1

t log t
dt

For this problem, there does not seem to be an obvious u to choose. However,
we probably should choose either u = 1/t or u = log t, since these are the only
components of the integral that we can really see. Let’s choose u = log t. Then
du = dt/t, so the integral becomes∫

1

t log t
dt =

∫
du

u
= log u + C = log(log t) + C

2. Integration by Parts

One of the most versatile integration techniques is known as integration by parts. Just like
how u-substitution arises from the chain rule for derivatives, integration by parts arises from
the product rule for derivatives. Recall that the product rule says that (fg)′ = f ′g + fg′.
If we integrate both sides, we have an equation∫

(f(x)g(x))′ dx =

∫
f ′(x)g(x) dx +

∫
f(x)g′(x) dx

We can evaluate the integral on the left, and if we isolate the second term on the right, we
have the equation ∫

f(x)g′(x) dx = f(x)g(x) −
∫

f ′(x)g(x) dx

This might not seem like we have done anything new, but in actuality this formula, which
is the integration by parts formula, is a powerful new integration technique that will allow
us to compute integrals that previously we were unable to solve.
A common practice is to write u = f(x), dv = g′(x) dx, and so write du = f ′(x), v = g(x).
Then the integration by parts formula looks like∫

u dv = uv −
∫

v du

The key feature of the integration by parts formula is that it allows us to take an integral
whose integrand is the product of two functions f(x), g′(x) , and replace the problem of
solving that integral by solving an integral whose integrand is f ′(x), g(x). In other words,
we can transform any integrand which is the product of two functions into another where
we differentiate one of the terms and integrate the other term. Even though it seems like we
will not get anywhere when we do this (after all, a derivative on one part of the integral has
to be balanced with an integral on the other), there are many situations where integrating
does not increase the ‘complexity’ of a function.

Example. A standard example for integration by parts is the integral
∫
xex dx. There is

no u-substitution that would let us solve this integral. However, we see that this integral
is the product of two functions, x, ex. If we differentiate x, we end up with the simpler
function 1, while integrating ex still gives us ex. Therefore, the integration by parts formula,
with u = x, dv = ex dx, gives du = dx, v = ex, and therefore
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∫
xex dx = xex −

∫
ex dx = xex − ex + C

Sometimes a problem requires multiple integration by parts to solve.

Example. Compute the integral
∫
x2ex dx. We should apply integration by parts to

u = x2, dv = ex dx, and therefore du = 2x dx, v = ex. Then integration by parts yields∫
x2ex dx = x2ex − 2

∫
xex dx

At this point, if we had not done the above example, we would have to apply integration
by parts again, to the integral on the right hand side. But since we have already calculated
this integral, we can substitute that answer to obtain∫

x2ex dx = x2ex − 2xex + 2ex + C

From this example, it is clear that one could use integration by parts n times to integrate∫
xnex dx, with each use of the integration by parts formula reducing the power of x by

one.
There will be times when integration by parts seems to not get very far, but actually does
end up being useful. The following example illustrates a common trick when integration
by parts involves sin or cos.

Example. Integrate
∫
ex cosx dx. Both ex and cosx are easy to integrate and differentiate,

so let’s choose u = ex, dv = cosx dx. Then du = ex dx, v = sinx. One application of
integration by parts yields∫

ex cosx dx = ex sinx−
∫

ex sinx dx

However, ex sinx isn’t any easier to integrate than ex cosx. Nevertheless, we can try in-
tegration by parts again on ex sinx. This time, let u = ex, dv = sinx dx. (We make this
choice of u, dv because if we chose u = sinx, dv = ex dx, we would end up back at the
original problem again.) Then du = ex dx, v = − cosx dx. Then we can write the above
equation as ∫

ex cosx dx = ex sinx− (−ex cosx +

∫
ex cosx dx)

Even though it looks like we just got our original integral back, something non-trivial
happened. Namely, we can actually add

∫
ex cosx dx to both sides, and we obtain

2

∫
ex cosx dx = ex sinx + ex cosx + C

or ∫
ex cosx dx =

1

2
(ex sinx + ex cosx) + C

One could apply the same method to evaluate
∫
ex sinx dx.

Sometimes integration by parts is not so obvious to apply. In particular, there may be
times where you need to let dv = dx.

Examples.
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• Integrate ∫
ln(x2 + 1) dx

After some brief consideration, it is clear that u-substitution isn’t going to work.
Instead, let’s try integration by parts. We can’t integrate ln(x2 + 1), so we want to
set that equal to u. Since there isn’t anything left in the integrand, we have to let
dv = dx. Then we have

du =
2x dx

x2 + 1
, v = x

The integration by parts formula yields∫
ln(x2 + 1) dx = x ln(x2 + 1) − 2

∫
x2

x2 + 1
dx

The latter integral is something we can evaluate. If we eliminate the power of x2 in
the numerator, we obtain∫

x2

x2 + 1
dx =

∫
1 − 1

x2 + 1
dx = x− arctanx + C

Therefore, the original integral we wanted to evaluate is equal to∫
ln(x2 + 1) dx = x ln(x2 + 1) − 2x + 2 arctanx + C

• Integrate ∫
arctanx dx

Again, it’s not clear how to do this integral, so we will try integration by parts.
Since we don’t know how to integrate arctanx yet, we set u = arctanx, dv = dx.
Then

du =
1

x2 + 1
, v = x

and the integration by parts formula yields∫
arctanx dx = x arctanx−

∫
x

x2 + 1
dx

This latter integral is something we can evaluate, using u-substitution. If we let
u = x2 + 1, some quick calculations shows that we have∫

arctanx dx = x arctanx− 1

2
log(x2 + 1) + C

Integration by parts can certainly be a difficult integration technique to use. It is quite
computationally intensive (you need to be able to at least differentiate and integrate sim-
pler parts of the integrand), and in some cases you have to apply integration by parts
many times, which requires you to keep track of signs and constants accurately. However,
integration by parts also greatly increases the number of integrals you will be able to solve.
As always, practice is the key to learning and becoming comfortable with this powerful
integration method.


