
MATH 8 CLASS 10 NOTES, 10/13/2010

Some notation from the concepts we covered in the last class: the partial sum of a Taylor
series for a function f(x) at the point x = a up to the xn term is sometimes called the nth
Taylor polynomial for f(x), and is written Tn(x). Concretely, this means

Tn(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + . . . +

f (n)(a)

n!
(x− a)n

Let us look at more examples of Taylor series, and applications to other mathematical
problems.

Examples.

• Calculate the Maclaurin series for f(x) = sinx. To solve this problem, we need to
be able to calculate derivatives of every order of f , evaluated at a. Fortunately,
f ′(x) = cosx, f ′′(x) = − sinx, f (3)(x) = − cosx, f (4)(x) = sinx, so these derivatives

repeat, and we have f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f (3)(0) = −1, f (4)(0) = 0, . . .. If
we plug these values into the formula for Taylor series, we obtain

sinx = x− x3

3!
+

x5

5!
− . . . =

∞∑
n=0

(−1)xx2n+1

(2n + 1)!

• Estimate sin 1 to within an accuracy of 1/1000. We use the Maclaurin series we
found above:

sin 1 = 1− 1

3!
+

1

5!
− 1

7!
+ . . .

Notice that this is an alternating series! Therefore, we can use the error estimate
for the alternating series test, instead of the Taylor remainder theorem, which is
much more difficult to use. If we want to estimate sin 1 to within 0.001 accuracy,
we want the first discarded term to have size less than 0.001. Since 7! = 5040 >
1000, 1/7! < 0.001, and therefore 1 − 1/3! + 1/5! estimates sin 1 to within an error
of 0.001.

This example shows that there might be occasions where a Taylor series is also
an alternating series. If that is the case, it is probably easier to apply an error esti-
mate for the alternating series test, instead of using the more complicated Taylor’s
remainder theorem.
• Taylor series are also handy for evaluating certain limits. For example, suppose we

want to calculate

lim
x→∞

cosx− 1 + x2/2

2x4

Replace cosx with its Maclaurin series, which is valid for all real x:

lim
x→∞

cosx− 1 + x2/2

2x4
=

(1− x2/2 + x4/4!− . . .)− 1 + x2/2

2x4
=

x4/4!− . . .

2x4

All the . . . are higher order terms, and as x → ∞ they vanish, so this limit is
1/48. Alternatively, if we knew L’Hopital’s rule, we could have also evaluated this
limit.
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• Calculate the following integral as a power series:∫
x2 arctanx2 dx

For what values of x does your solution converge? For a problem like this, determine
the power series expansion of the integrand, and then integrate that term-by-term.
In this problem, we have

x2 arctanx2 = x2
(
x2 − x6

3
+

x10

5
− x14

7
+ . . .

)
= x4 − x8

3
+

x12

5
− x16

7
+ . . . .

If we integrate this term by term, we get∫
x2 arctanx2 dx =

x5

5
− x9

9 · 3
+

x13

13 · 5
− . . . =

∞∑
n=0

(−1)nx4n+5

(4n + 5)(2n + 1)
+ C

This series is convergent for |x| < 1, as the ratio test will show. Also, at the
endpoints x = ±1, one can show that this series converges there as well, by the
alternating series test.
• Using the answer to the previous question, use the least number of terms possible

to estimate the definite integral∫ 1/2

0
x2 arctanx2 dx

to an accuracy of 0.0001. If we plug in the bounds 0, 0.5 to the answer in the
previous question, we find that the definite integral in question is equal to the value
of the alternating series

∞∑
n=0

(−1)n

24n+5(4n + 5)(2n + 1)
=

1

25 · 5
− 1

29 · 9 · 3
+

1

213 · 13 · 5
− . . . .

Since 0.0001 = 10−4, and 213 · 13 · 5 > 104, while 29 · 9 · 3 < 104, this shows that

1

25 · 5
− 1

29 · 9 · 3
estimates our integral to an accuracy of at least 0.0001.

You should know the Taylor series, at a = 0, of the following six functions. Ideally, you
should remember how to derive them, as well:

1

1− x
= 1 + x + x2 + x3 + . . .

arctanx = x− x3

3
+

x5

5
− . . .

ln(1 + x) = x− x2

2
+

x3

3
− . . .

ex = 1 + x +
x2

2
+

x3

3!
+ . . .

sinx = x− x3

3!
+

x5

5!
− . . .

cosx = 1− x2

2!
+

x4

4!
− . . .


