
MATH 8 CLASS 1 NOTES, SEPTEMBER 22 2010

1. Introductory Comments.

Instructor information. Name: Andrew Yang, Office: Kemeny 316, Email: Andrew.C.Yang@dartmouth.edu,
Office phone: 646-2960, Office hours: Tuesday and Thursday, 12:30pm - 2:00pm, or by ap-
pointment (use email or talk to me in person.)
Book: Calculus, 6th edition, by James Stewart. Available at the bookstore.
Webpage: www.math.dartmouth.edu/∼m8f10. This is very important as it will have a
link to Webwork as well as a your weekly written homework assignments. It has compre-
hensive information about the class and will also be the place to go for updates as the class
proceeds.
Grading: Based on homework and exams. By the end of the class, there will be four
numerical scores, each out of 100: homework, midterm 1, midterm 2, and the final exam.
If the final exam is your lowest score, your final raw score is obtained by summing your
four scores together. If the final exam is not the lowest score, your lowest score is dropped
and your final exam counts double (so out of 200). We then sort the class by score and fit
the class to a curve to determine letter grades.

There are two types of homework: Webwork and written assignments. Webwork is an
entirely computer-based homework system, where you login (go to the math 8 webpage for
a link to the login page) using your ID and password, and get homework problems from
the Webwork system. You input your answers back into the computer, and the system will
tell you if you are right or wrong. If you are wrong, you have the chance (infinitely many
chances, most of the time) to find the correct answer. Each set of problems in the Webwork
system will have a ‘closing time’, after which you will not be able to work on the problems
for credit anymore. You will get a new Webwork assignment each class, so be sure to check
the system daily, or at least every other day! Usually, Webwork assignments will be due at
10am about half a week after they are originally assigned.

If you do not have a Webwork ID and password by Thursday, email me with your name
and student ID number immediately!

Written homework assignments are more traditional and will be due once a week, on
Monday at the beginning of class. You can turn them in at the beginning of class or at
my office (slide under my door if I’m not in), before 12:30pm. Each week’s homework
will be listed on the course webpage. A grader will grade your assignments and they will
usually be returned back in the homework boxes, no later than one week after they are due.
On written assignments, we expect you to show all your work in a reasonably organized
way. Correct answers without supporting justification will not be given full marks. Written
homework and Webwork will each comprise half of your homework score.
Tutorials: On Sunday, Tuesday, and Thursday nights at 7:00pm - 9:00pm, three graduate
students will run tutorial sessions for this class in Wilder 111. These sessions are informal
and can be thought of as help sessions, and you are free to arrive or leave at any time.
X-hour: The X-hour for this section is on Tuesday, at 1:00pm - 1:50pm. Keep this slot
of time available – although we will not use it regularly, there will be at least a few weeks
where we will use the X-hour as a replacement class for another day where I will not be in.
Late homework policy: In general, unexcused late homework will not be accepted for
a score. The only general reasons we will grant extensions on homework are for illness or
family emergencies. In these cases, please notify me before the assignment is due with the
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reason why you cannot turn in the assignment on time. If you have some other reason why
you cannot finish an assignment on time, you can always email me and ask for an extension,
although I cannot guarantee that you receive one. This late policy homework applies to
both Webwork and written homework.
Assistance: In general, there is a lot of assistance available for this class. There are
the previously mentioned tutorial sessions, office hours, either for me or for the other two
instructors for math 8, and also the Tutor Clearinghouse. The last option might require
you to pay a small fee, although some students have found it useful and worth the price in
the past.

If you are having trouble in the class, do not hesitate to seek help.

2. General advice

• The most important piece of advice is to keep up with the progress of the class.
Mathematics may very well be the subject where progress at any one point is most
dependent on understanding everything that came before it, so once you fall behind
you will have difficulty understanding the material in subsequent classes.
• The best way to test yourself for understanding of mathematical content is to solve

problems by yourself. Of course, if you are having some difficulty and are not making
progress on a problem, you should feel free to seek assistance from classmates, TAs,
or the instructors, but it is worth trying each problem on your own for at least some
amount of time. Even if you do not find a solution you may benefit from partial
progress on the problem, or discover your mathematical weaknesses.
• If you are really serious about learning mathematics well, it might be a good idea to

work problems from the textbook which are not assigned (and there will be many of
these). In particular, you want to look at questions which are difficult, since those
are the ones which will bring the greatest understanding.
• The above being said, for the best understanding of mathematical material, you

should not only work homework assignments, but also discuss mathematics (with
peers, TAs, or instructors) verbally. You will find that speaking, listening, reading,
and writing mathematics are all a bit different from each other, and that maximal
understanding only comes about when you engage in all four of these activities.
• Browse the section of a textbook that will be covered in class prior to actually

attending the class. You shouldn’t expect complete understanding, but some expo-
sure to the terms and ideas before attending class will probably make class more
enlightening and less confusing.
• If you start to have difficulty, do not hesitate to seek help. As mentioned earlier,

falling behind is highly undesirable, and there is plenty of available assistance.
• Nevertheless, don’t necessarily expect to understand everything at once. Repeated

exposure to the same material will build understanding, and something which
seemed incomprehensible at first glance can become understandable with repeated
effort.
• Try to do a little bit of mathematics everyday. Of course, you really don’t have

a lot of choice since there are homework assignments every other day, but doing
mathematics isn’t very different from playing a sport or a musical instrument –
unless you have a lot of experience, you need to practice daily to stay at your best.
We don’t expect you to work on math two hours a day, but something more like
thirty minutes per day, on average (outside of lectures, of course) isn’t unreasonable.
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3. Chapter 12.1: Sequences

3.1. Introduction. Informally speaking, a sequence is a list of numbers, presented with
an ordering. We will often designate the members of a sequence with the variables an, bn,
etc, where the n (usually) range over positive or non-negative integers.

Examples.

• Let a1 = 1, a2 = 2, a3 = 3, . . ., and in general, an = n.
• Let a2 = 1, a3 = 1, . . ., and in general, an = 1. Notice that a sequence does not

have to start with an a1 term; in this example we start with a2, and we could also
have started with a0 or even a−1.
• Let a0 = 1, a1 = 1/2, a2 = 1/4, . . ., and in general, an = 1/2n.

Notice that in each of these examples, we were able to define the general term of a
sequence using an explicit function of a real variable: f(x) = x, 1, and 1/2x, respectively.
This does not always have to be the case, as the following two examples show:

Examples.

• Let a1 = 1, a2 = 2 · 1 = 2, a3 = 3 · 2 · 1 = 6, a4 = 4 · 3 · 2 · 1 = 24, . . ., and in general,
an = n! = n · (n − 1) · (n − 2) · · · 2 · 1. We call this the factorial function. Notice
that this function has no obvious extension to non-integer values, or even negative
integer values. We also define 0! = 1. The factorial function will be very important
in the subsequent parts of this chapter.
• Let a1 = 1, a2 = 1, and for n ≥ 3, an = an−1+an−2. Therefore, the first few terms of

this sequence are a1 = 1, a2 = 1, a3 = 2, a4 = 3, a5 = 5, a6 = 8, a7 = 13, a8 = 21, . . ..
This is what is known as a recursive definition, where a general term of the sequence
is defined using the preceding terms. This particular sequence is known as the
Fibonacci sequence. Notice that there is no obvious explicit formula for the nth
term of the sequence.

From a standpoint of notation, we may write {an} for the sequence composed of all the
elements an. If we want to know when this sequence starts, we may write something like
{an}∞n=1, say, to indicate that the sequence starts with a1.

One way to visualize a sequence is to plot its elements by pretending that the sequence
is a function. Unlike a function of a real variable, the plot of a sequence is a series of dots.
For example, we can plot each of the above sequences by drawing dots at (n, an) for each
n.

3.2. Limits. One of the most important properties of a sequence is whether or not it has
a limit. This term is familiar from Calculus I, and it turns out that the notion of the limit
of a sequence is very similar to the notion of the limit of a function.

Intuitively speaking, we say the sequence {an} converges to a limit L (L is a real number)
if the terms an of the sequence approach L as n gets large. If a sequence does not converge
to some limit, then we say the sequence diverges. If a sequence {an} converges to L, we
will frequently write this as

lim
n→∞

an = L

Notice that, written this way, there is almost no difference between this definition and
the definition of the limit of a function f(x) as x → ∞. As a matter of fact, if we have a
sequence an which arises from a function f(x), in the sense that an = f(n) for all (positive)
integers n, then limn→∞ an = L if limx→∞ f(x) = L. (This is Theorem 12.1.3 of the text.)
A more precise definition of the limit of a sequence, using epsilons, is
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Definition. A sequence an converges to the limit L if, for all ε > 0, there exists some N
such that for all n > N , |an − L| < ε.

The analogy between limits of sequences and limits of functions does not end here. Recall
that the limit of a sum of functions is the sum of the limits, etc. The same holds true for
sequences: namely, we have identities like

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

whenever {an}, {bn} are both convergent sequences. There are other similar properties; see
page 714 of the text for more details.

If a sequence is described by an explicit formula, we can often use techniques from
Calculus I to determine whether the sequence converges or diverges, and find the limit.

Examples.

• Suppose an = (sinn)/n. Does this sequence converge or diverge, and if it converges,
to what limit? If we consider the function f(x) = sinx/x, then we quickly see that
limx→∞ f(x) = 0, since the numerator is bounded (fluctuates between −1 and 1),
while the denominator goes to infinity. Therefore, the sequence {an} converges to
the limit 0.
• Suppose an =

√
n/(2
√
n + 1). The function f(x) =

√
x/(2
√
x + 1) has limit 1/2 as

x → ∞, as one can see by dividing both numerator and denominator by
√
x and

then taking the limit.
• Suppose an = (lnn)/n. The function f(x) = lnx/x has limit 0 as x → ∞, as an

application of L’Hopital’s rule will show. Therefore, the sequence {an} converges
to the limit 0.
• Suppose an = cos(1/n). The function f(x) = cos(1/x) has limit 1 as x→∞, since

1/x→ 0, and cos 0 = 1. Therefore, the sequence {an} converges to the limit 1.

Another way to evaluate the last limit is to use the property that if f(x) is a function
continuous at L, and limn→∞ an = L, then limn→∞ f(an) = f(L). So in the above example,
we are using the fact that limn→∞ 1/n = 0, and that cosx is continuous at x = 0. Can you
think of a counterexample to this property if f(x) is not continuous at L?

Another useful property to know (and one which probably seems self-evident) is the
following: if limn→∞ |an| = 0, then limn→∞ an = 0. For instance, this shows that an =
(−1)n/n converges to 0. It’s important to remember that this can definitely be false if the
limit of |an| is not equal to 0. Again, can you think of a counterexample?

In all of the previous examples, the sequences we have examined have converged. Of
course, sequences can also diverge:

Examples.

• Let an = n. Then this sequence evidently diverges. Notice that as n→∞, an →∞
as well. Whenever this is the case, we sometimes write limn→∞ an = ∞; however,
we still call {an} a divergent sequence and sometimes say that the sequence diverges
to infinity. When we say that a sequence diverges to infinity, we really mean that
all, and not some of, the terms get very large as n gets large.
• Let an = 1 if n is odd, and an = n if n is even. So the sequence starts out

1, 2, 1, 4, 1, 6, . . .. Does this sequence diverge? If so, does it diverge to infinity? (Talk
about this with your neighbor.) This sequence does diverge, but not to infinity. It
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evidently does not have a limit, but it does not diverge to infinity because no matter
how far out in the sequence we get, there are still some elements which are small
(namely, all the odd-indexed terms).
• Let an = n!. This sequence also diverges to infinity, since n! grows very rapidly

(certainly faster than an = n).
• Let an = (−1)n. This sequence is given by {−1, 1,−1, 1, . . .}. Notice that although

this sequence does not get arbitrarily large, it still diverges since its terms do not
approach any fixed value.

Another convenient (and probably self-evident) property is the following. If limn→∞ an =
∞, then limn→∞ 1/an = 0. Intuitively, if an is getting arbitrarily large as n→∞, we expect
1/an to be arbitrarily small. So this shows, for instance, that limn→∞ 1/n! = 0. We will
see another way of calculating this limit soon.

It is useful to note that the convergence or divergence of a sequence is not impacted
by the behavior of a finite number of terms of the sequence. For instance, maybe we

have a sequence which starts with 1, 22, 33
3
, 44

44

. Even though the fourth term is already
ridiculously large (it has more digits than what is believed to be the number of atoms in
the universe), if the remaining terms are given by 1/n, n ≥ 5, then the sequence is still
going to converge to 0.

A special class of sequences which we sometimes consider are monotonic sequences. We
say that a sequence {an} is increasing if a1 < a2 < a3 < . . ., while a sequence is decreasing
if a1 > a2 > a3 > . . .. A sequence is monotonic if it is either decreasing or increasing.
The fact that a sequence is decreasing or increasing does not tell us, on its own, whether
the sequence converges or diverges:

Examples.

• In the above example an = n, the sequence {an} is increasing and diverges to
infinity.
• Let a1 = 1/2, a2 = 3/4, a3 = 7/8, . . . , and in general, an = 1 − 1/2n. This is an

increasing sequence, but converges to the limit 1.

However, there is an additional property which, in conjunction with monotonicity, can
tell tell us that a sequence converges. We say that a sequence {an} is bounded above if
all of its terms are bounded by some number; that is, we can find a number M such that
an < M for all n. Similarly, we say a sequence is bounded below if we can find a number m
such that an > m for all n, and we say a sequence is bounded if it is both bounded above
and below.

An obvious difference between the two examples above is that an = n is not bounded (it
gets arbitrarily large), while an = 1− 1/2n is bounded (below by 0, above by 1). We might
conjecture that bounded, monotonic sequences are convergent; as a matter of fact, this is
true:

Theorem. (Monotonic Sequence Theorem) Any bounded, monotonic sequence is conver-
gent.

Of course, not every convergent sequence is monotonic (although they are all bounded).
Can you think of an example of a convergent sequence which is not monotonic?

Another tool which is sometimes useful (and often used implicitly) is the squeeze theorem:
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Theorem. (Squeeze Theorem). Suppose an, bn, cn satisfy an ≤ bn ≤ cn for all large n (for
all n ≥ N , for some fixed N), and {an}, {cn} both converge to the same limit L. Then {bn}
converges to L as well.

Let’s conclude with some additional examples, all involving factorials:

Examples.

• Let an = 1/n!. We already saw that the limit is equal to 0. Another way of showing
this is to apply the squeeze theorem. For example, we always have 0 ≤ 1/n! ≤ 1/n,
and the sequences {0}, {1/n} both converge to 0, so the squeeze theorem tells us
limn→∞ 1/n! = 0 as well.
• Let an = n2/n!. We can either apply the squeeze theorem or rewrite this sequence

and use limit laws. For the first approach, notice that 0 ≤ an ≤ 2/(n − 2)! for all
n ≥ 3, since

n2

n!
=

n · n
n · n− 1 · · · 1

=
n

n
· n

n− 1
· 1

(n− 2)!

and n/n − 1 ≤ 2. Using the fact that 2/(n − 2)! converges to 0 as n → ∞, the
squeeze theorem tells us that limn→∞ n2/n! = 0. For the other approach, we have

lim
n→∞

n2

n!
= lim

n→∞

(
n2

n(n− 1)

)(
1

(n− 2)!

)
= 1 · 0

A bit of thought shows that there was nothing special about the exponent ‘2’ in
the numerator. We could have used any arbitrarily large exponent like n1000000 and
still have gotten the same result; namely, convergence to the limit 0. This shows
that the factorial function grows faster than any power of n.


