Week 1 Friday

Set Theory

Due Friday Jan 15th

This homework will explore the central mathematical step in the Burali-Forti paradox: if the aggregate of all ordinals were a set, then it would itself be an ordinal. First, let's remind ourselves of some definitions.

Definition. Let A be a set. The binary relation $<\subseteq A \times A$ is said to be a strict linear order if $<$ satisfies the following:
(i) (totality) $\forall a, b \in A(a \neq b \rightarrow(a<b \vee b<a))$
(ii) (antisymmetry) $\forall a, b \in A \neg(a<b \wedge b<a)$
(iii) (transitivity) $\forall a, b, c \in A((a<b \wedge b<c) \rightarrow a<c)$

Definition. Let A be a set, let $<$ be a strict linear order on A, and let $S \subseteq A$. An element $a_{0} \in S$ is <-least in S if $\forall b \in S\left(a_{0}=b \vee a_{0}<b\right)$.

Definition. Let A be a set. A binary relation $<$ is said to be a well-ordering if it satisfies (i), (ii), and (iii) above and if every non-empty subset of A has a <-least element. That is:

$$
\text { (iv) } \forall S\left((S \subseteq A \wedge S \neq \emptyset) \rightarrow \exists a_{0} \in S \forall b \in S\left(a_{0}=b \vee a_{0}<b\right)\right)
$$

A well-order seems like a swell order, but if it could be expressed in the simplest way possible that would be even neater.

Definition. A set α is called an ordinal if:
(i) the element-of relation \in is a well-order on α
(ii) $\forall \beta \in \alpha(\gamma \in \beta \rightarrow \gamma \in \alpha)$

Definition. Let α be an ordinal. The successor of α, denoted $\alpha+1$, is the set $\alpha \cup\{\alpha\}$.

If you check the logic carefully, \emptyset is an ordinal for trivial reasons. As suggested in class, it represents 0 . Ordinals start at nothing, and ordinals can always keep going.

Facts. (i) Let α and β be distinct ordinals. Either $\alpha \in \beta$ or $\beta \in \alpha$ but not both.
(ii) If α is an ordinal, then $\alpha+1$ is also an ordinal.
(iii) If α is an ordinal and $\beta \in \alpha$, then β is an ordinal.
*1) Prove the following using the facts above:
Claim. Suppose $\mathcal{O}=\{\alpha \mid \alpha$ is an ordinal $\}$ is a set. Then \mathcal{O} is an ordinal. (Hint: Let $A \subseteq \mathcal{O}$ be non-empty. So $\exists \alpha \in A$. Either α is \in-least in A or ...)

