Week 1 Friday

Set Theory

Due Friday Jan 15th

This homework will explore the central mathematical step in the Burali-Forti paradox: if the aggregate of all ordinals were a set, then it would itself be an ordinal. First, let's remind ourselves of some definitions.

Definition. Let A be a set. The binary relation $\leq A \times A$ is said to be a <u>strict linear order</u> if \leq satisfies the following:

(i) (totality) ∀a, b ∈ A (a ≠ b → (a < b ∨ b < a))
(ii) (antisymmetry) ∀a, b ∈ A ¬(a < b ∧ b < a)
(iii) (transitivity) ∀a, b, c ∈ A ((a < b ∧ b < c) → a < c)

Definition. Let A be a set, let < be a strict linear order on A, and let $S \subseteq A$. An element $a_0 \in S$ is <u><-least</u> in S if $\forall b \in S$ $(a_0 = b \lor a_0 < b)$.

Definition. Let A be a set. A binary relation < is said to be a well-ordering if it satisfies (i), (ii), and (iii) above and if every non-empty subset of A has a <-least element. That is:

(iv)
$$\forall S((S \subseteq A \land S \neq \emptyset) \rightarrow \exists a_0 \in S \ \forall b \in S(a_0 = b \lor a_0 < b))$$

A well-order seems like a swell order, but if it could be expressed in the simplest way possible that would be even neater.

Definition. A set α is called an ordinal if:

(i) the element-of relation \in is a well-order on α

(ii)
$$\forall \beta \in \alpha \ (\gamma \in \beta \to \gamma \in \alpha)$$

Definition. Let α be an ordinal. The <u>successor</u> of α , denoted $\alpha + 1$, is the set $\alpha \cup \{\alpha\}$.

If you check the logic carefully, \emptyset is an ordinal for trivial reasons. As suggested in class, it represents 0. Ordinals start at nothing, and ordinals can always keep going.

Facts. (i) Let α and β be distinct ordinals. Either $\alpha \in \beta$ or $\beta \in \alpha$ but not both.

- (ii) If α is an ordinal, then $\alpha + 1$ is also an ordinal.
- (iii) If α is an ordinal and $\beta \in \alpha$, then β is an ordinal.

*1) Prove the following using the facts above:

Claim. Suppose $\mathcal{O} = \{ \alpha \mid \alpha \text{ is an ordinal} \}$ is a set. Then \mathcal{O} is an ordinal.

(Hint: Let $A \subseteq \mathcal{O}$ be non-empty. So $\exists \alpha \in A$. Either α is \in -least in A or ...)