## Dartmouth College

## Mathematics 81

The following exercises are intended to remind you of (or sharpen your skills regarding) material from Math 71 . When convenient we shall denote the quotient ring $\mathbb{Z} / m \mathbb{Z}$ by $\mathbb{Z}_{m}$. Also, recall that all our ring homomorphisms take the multiplicative identity of one ring to the multiplicative identity of the other. Below are a few handy results which you may use without proof, but if they are unfamiliar, you should read the relevant material in your text.

Let $f \in \mathbb{Z}[x] . f$ is called primitive if and only if the gcd of its coefficients is 1 . For example $2 x^{2}-6 x+3$ is primitive in $\mathbb{Z}[x]$. The following two theorems are essentially (if not in fact) equivalent to Gauss's lemma over $\mathbb{Q}$ :
Theorem: Let $f \in \mathbb{Z}[x]$. Then $f$ is irreducible in $\mathbb{Z}[x]$ if and only if $f$ is primitive in $\mathbb{Z}[x]$ and irreducible in $\mathbb{Q}[x]$.
Theorem: Let $f \in \mathbb{Z}[x]$, and suppose that $f=g h$ for two polynomials $g, h \in \mathbb{Q}[x]$. Then $f=g_{0} h_{0}$ for polynomials $g_{0}, h_{0} \in \mathbb{Z}[x]$ with $\operatorname{deg}(g)=\operatorname{deg}\left(g_{0}\right)$ and $\operatorname{deg}(h)=\operatorname{deg}\left(h_{0}\right)$. In particular $g_{0}$ and $h_{0}$ are rational scalar multiples of $g$ and $h$ respectively.

1. Show that there exist ring homomorphisms $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ if and only if $n \mid m$. Hint: The "zeroth homomorphism" theorem makes one implication almost effortless. Show that all such homomorphisms must be surjective.
2. For each of the ideals $I$ listed below, determined whether the ideal $I$ is prime, maximal, or neither in $\mathbb{Z}[x]$ and then in $\mathbb{Q}[x]$ by examining the appropriate quotient ring. If the quotient is not an integral domain, find zero divisors. If the quotient is not a field, then I is not maximal, so find a maximal ideal $M$ with $I \subsetneq M$, and justify that $M$ is maximal.
(a) $I=\left(x^{3}+2\right)$
(b) $I=\left(5, x^{3}+2\right)$
(c) $I=\left(7, x^{3}+2\right)$
3. More examples in $\mathbb{Z}[x]$.
(a) Which (if any) of $\left(x^{3}+2, x^{3}+9\right)$ or $\left(x^{3}+2, x^{3}+7\right)$ are maximal ideals in $\mathbb{Z}[x]$ ?
(b) Find infinitely many maximal ideals containing $\left(x^{3}+x^{2}\right)$.
4. Let $f$ be a nonconstant polynomial in $\mathbb{Q}[x]$. Show that there are only finitely many maximal ideals in $\mathbb{Q}[x]$ containing $(f)$.
5. It follows from the proof of Theorem 14 in section 8.3 that every proper ideal in $\mathbb{Q}[x]$ is contained in a maximal ideal (see p 288). That fact remains true for $\mathbb{Z}[x]$ as well, but for reasons not typically covered in math 71.
Proof or counterexample: Let $P$ be a nonzero prime ideal in $\mathbb{Z}[x]$, and $I$ an ideal with $P \subseteq I \subsetneq \mathbb{Z}[x]$. Then $I$ is a prime ideal.
