Dartmouth College Mathematics 81

This problem is part of the assignment due on Wednesday, 14 January.

Let p be a prime in \mathbb{Z} , and consider two multiplicative subsets of \mathbb{Z} : $S = \mathbb{Z} \setminus p\mathbb{Z}$, and $T = \{1, p, p^2, \ldots\}$. The localization $S^{-1}\mathbb{Z}$ is denoted $\mathbb{Z}_{(p)}$ and called the localization of \mathbb{Z} at the prime p.

- 1. Characterize $\mathbb{Z}_{(p)}$ as a subset of \mathbb{Q} , that is $\mathbb{Z}_{(p)} = \{a/b \in \mathbb{Q} \mid \text{put your conditions here}\}$, and characterize the unit group $\mathbb{Z}_{(p)}^{\times}$.
- 2. Characterize $T^{-1}\mathbb{Z}$ as a subset of \mathbb{Q} , and characterize its unit group.
- 3. The ring $\mathbb{Z}[\frac{1}{p}]$ is the homomorphic image of the polynomial ring $\mathbb{Z}[x]$ under the evaluation homomorphism which takes $x \mapsto 1/p$. Show that $T^{-1}\mathbb{Z} = \mathbb{Z}[\frac{1}{p}]$.
- 4. Show that for any prime $q \neq p$, $\mathbb{Z}[\frac{1}{p}] \subset \mathbb{Z}_{(q)}$.
- 5. Finally show that $\mathbb{Z}[\frac{1}{p}] = \bigcap_{q \neq p} \mathbb{Z}_{(q)}$; the intersection is over all primes q of \mathbb{Z} except p.