Dartmouth College

Mathematics 81
This problem is part of the assignment due on Wednesday, 14 January.
Let p be a prime in \mathbb{Z}, and consider two multiplicative subsets of $\mathbb{Z}: S=\mathbb{Z} \backslash p \mathbb{Z}$, and $T=\left\{1, p, p^{2}, \ldots\right\}$. The localization $S^{-1} \mathbb{Z}$ is denoted $\mathbb{Z}_{(p)}$ and called the localization of \mathbb{Z} at the prime p.

1. Characterize $\mathbb{Z}_{(p)}$ as a subset of \mathbb{Q}, that is $\mathbb{Z}_{(p)}=\{a / b \in \mathbb{Q} \mid$ put your conditions here $\}$, and characterize the unit group $\mathbb{Z}_{(p)}^{\times}$.
2. Characterize $T^{-1} \mathbb{Z}$ as a subset of \mathbb{Q}, and characterize its unit group.
3. The ring $\mathbb{Z}\left[\frac{1}{p}\right]$ is the homomorphic image of the polynomial ring $\mathbb{Z}[x]$ under the evaluation homomorphism which takes $x \mapsto 1 / p$. Show that $T^{-1} \mathbb{Z}=\mathbb{Z}\left[\frac{1}{p}\right]$.
4. Show that for any prime $q \neq p, \mathbb{Z}\left[\frac{1}{p}\right] \subset \mathbb{Z}_{(q)}$.
5. Finally show that $\mathbb{Z}\left[\frac{1}{p}\right]=\bigcap_{q \neq p} \mathbb{Z}_{(q)}$; the intersection is over all primes q of \mathbb{Z} except p.
