Math 75 NOTES 2 on finite fields

C. Pomerance

Let F be a finite field with q elements. We have just seen that the number $N_{q}(d)$ of monic irreducible polynomials of degree d in $F[x]$ that divide $x^{q^{d}}-x$ satisfies the formula

$$
N_{q}(d)=\frac{1}{d} \sum_{j \mid d} \mu(d / j) q^{j}
$$

Here μ is the Möbius function from elementary number theory and combinatorics. We can use the fact that $\mu(n)$ is always ± 1 or 0 to get an estimate for $N_{q}(d)$. We see that the term in the sum with the biggest absolute value is when $j=d$; the term is $\mu(1) q^{d}=q^{d}$. Thus,

$$
N_{q}(d) \geq \frac{1}{d} q^{d}-\frac{1}{d} \sum_{j=1}^{\lfloor d / 2\rfloor} q^{j}=\frac{1}{d} q^{d}-\frac{1}{d} \frac{q^{\lfloor d / 2\rfloor+1}-q}{q-1},
$$

using the formula to sum a geometric series. It is easy to check that for every positive integer d, we have $\lfloor d / 2\rfloor+1 \leq d$ (equality holds at $d=1,2$, and for $d \geq 3$ it is a strict inequality). Thus,

$$
N_{q}(d) \geq \frac{1}{d} q^{d}-\frac{1}{d} \frac{q^{d}-q}{q-1} \geq \frac{1}{d} q^{d}-\frac{1}{d}\left(q^{d}-q\right)>0 .
$$

The conclusion: The polynomial $x^{q^{d}}-x$ in $F[x]$ has at least one irreducible factor of degree d.
A further conclusion: If F is a finite field of q elements and d is a positive integer, then there is a finite field of q^{d} elements that contains F as a subfield. Indeed, let $f \in F[x]$ be irreducible of degree d. The field $F[x] /(f)$ has q^{d} elements and it contains (an isomorphic copy of) F.

A still further conclusion: If p is a prime and d is any positive integer, there is a finite field of size p^{d}. This then is the converse of what we learned earlier, namely, that every finite field has a prime-power number of elements.

Here are some further consequences of our discussion. If F is a finite field of q elements and $f \in F[x]$ is irreducible of degree d, then $f(x) \mid x^{q^{d}}-x$. (So $N_{q}(d)$ counts the total number of monic irreducibles in $F[x]$ of degree d.) Here's why $f(x) \mid x^{q^{d}}-x$. Let $K=F[x] /(f)$, a finite field with q^{d} elements. Then the element x of K, call it α, satisfies $f(\alpha)=0$, so f is the minimal polynomial for α in K. But every element in K is a root of $x^{q^{d}}-x$, so it follows that $f(x) \mid x^{q^{d}}-x$ in $F[x]$.

And: If L, F are finite fields with F a subfield of L of size q and $[L: F]=d$, then for each $j \mid d$, we have an intermediate field K with $[K: F]=j$ (which we have already seen is unique, provided it exists). Here's why. Let $f \in F[x]$ with $f \mid x^{q^{d}}-x$ irreducible of degree j. Since $x^{q^{d}}-x$ has q^{d} roots in L and splits into q^{d} distinct linear factors in $L[x]$, it follows that f has a root $\alpha \in L$. We've seen that $K=F[\alpha]$ is an intermediate field with $[K: F]$ being the degree of the minimal polynomial of α over F. But this polynomial is $f(x)$, which has degree j. In fact, $F[\alpha]$ is isomorphic to $F[x] /(f)$ and it is the unique intermediate field of size q^{j}. Done.

And finally: If F_{1} and F_{2} are finite fields of q elements each, then F_{1} is isomorphic to F_{2}. Here's why. We know there is some positive integer d and prime p with $q=p^{d}$. We have just learned that for the field extension $\mathbb{Z} /(p) \subset F_{1}$, and for each $j \mid d$, there is some irreducible factor f_{j} of $x^{p^{d}}-x$ in $(\mathbb{Z} /(p))[x]$ with $(\mathbb{Z} /(p))[x] /\left(f_{j}\right)$ the unique intermediate field of size p^{j}. Let's apply this with $j=d$. So, F_{1} is isomorphic to $(\mathbb{Z} /(p))[x] /\left(f_{d}\right)$, and the same for F_{2}. So they are isomorphic to each other.

Because of this last fact, for each prime power q, we have the notation \mathbb{F}_{q} for the unique (up to isomorphism) finite field of size q. We shall see later that not all presentations of \mathbb{F}_{q} are equally pleasant, and we may wish to distinguish between them, but the broad picture for now is that there is just one field of q elements.

Here's a proof of the formula

$$
\sum_{j \mid n} \mu(j)= \begin{cases}1, & n=1 \\ 0, & n>1\end{cases}
$$

From the definition of μ, we have for any positive integer n that

$$
\sum_{j \mid n} \mu(j)=\sum_{\substack{j \mid n \\ j \text { squarefree }}} \mu(j)=\sum_{j \mid m} \mu(j)
$$

where m is the largest squarefree divisor of n. Thus, it suffices to prove the formula for squarefree numbers m. The formula is clearly correct for $m=1$. Now assume it is true for m, and let p be a prime that does not divide m. The divisors of $p m$ fall into two disjoint sets, those numbers j which divide m and those that don't. The latter divisors are of the form $p j$, where $j \mid m$. Thus, since $\mu(p j)=-\mu(j)$, we have

$$
\sum_{j \mid p m} \mu(j)=\sum_{j \mid m} \mu(j)+\sum_{j \mid m} \mu(p j)=\sum_{j \mid m} \mu(j)-\sum_{j \mid m} \mu(j)=0 .
$$

Thus, the formula follows by induction.

