
Math 75 NOTES 2 on finite fields

C. Pomerance

Let F be a finite field with q elements. We have just seen that the number Nq(d) of monic

irreducible polynomials of degree d in F [x] that divide xqd − x satisfies the formula

Nq(d) =
1

d

∑

j|d

µ(d/j)qj.

Here µ is the Möbius function from elementary number theory and combinatorics. We can use
the fact that µ(n) is always ±1 or 0 to get an estimate for Nq(d). We see that the term in the
sum with the biggest absolute value is when j = d; the term is µ(1)qd = qd. Thus,

Nq(d) ≥
1

d
qd −

1

d

⌊d/2⌋
∑

j=1

qj =
1

d
qd −

1

d

q⌊d/2⌋+1 − q

q − 1
,

using the formula to sum a geometric series. It is easy to check that for every positive integer
d, we have ⌊d/2⌋ + 1 ≤ d (equality holds at d = 1, 2, and for d ≥ 3 it is a strict inequality).
Thus,

Nq(d) ≥
1

d
qd −

1

d

qd − q

q − 1
≥

1

d
qd −

1

d
(qd − q) > 0.

The conclusion: The polynomial xqd − x in F [x] has at least one irreducible factor of degree d.
A further conclusion: If F is a finite field of q elements and d is a positive integer, then there

is a finite field of qd elements that contains F as a subfield. Indeed, let f ∈ F [x] be irreducible
of degree d. The field F [x]/(f) has qd elements and it contains (an isomorphic copy of) F .

A still further conclusion: If p is a prime and d is any positive integer, there is a finite field
of size pd. This then is the converse of what we learned earlier, namely, that every finite field
has a prime-power number of elements.

Here are some further consequences of our discussion. If F is a finite field of q elements and
f ∈ F [x] is irreducible of degree d, then f(x) | xqd − x. (So Nq(d) counts the total number

of monic irreducibles in F [x] of degree d.) Here’s why f(x) | xqd − x. Let K = F [x]/(f), a
finite field with qd elements. Then the element x of K, call it α, satisfies f(α) = 0, so f is the
minimal polynomial for α in K. But every element in K is a root of xqd − x, so it follows that
f(x) | xqd − x in F [x].

And: If L, F are finite fields with F a subfield of L of size q and [L : F ] = d, then for each
j | d, we have an intermediate field K with [K : F ] = j (which we have already seen is unique,
provided it exists). Here’s why. Let f ∈ F [x] with f | xqd − x irreducible of degree j. Since
xqd − x has qd roots in L and splits into qd distinct linear factors in L[x], it follows that f has
a root α ∈ L. We’ve seen that K = F [α] is an intermediate field with [K : F ] being the degree
of the minimal polynomial of α over F . But this polynomial is f(x), which has degree j. In
fact, F [α] is isomorphic to F [x]/(f) and it is the unique intermediate field of size qj. Done.
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And finally: If F1 and F2 are finite fields of q elements each, then F1 is isomorphic to F2.
Here’s why. We know there is some positive integer d and prime p with q = pd. We have just
learned that for the field extension Z/(p) ⊂ F1, and for each j | d, there is some irreducible
factor fj of xpd − x in (Z/(p))[x] with (Z/(p))[x]/(fj) the unique intermediate field of size pj .
Let’s apply this with j = d. So, F1 is isomorphic to (Z/(p))[x]/(fd), and the same for F2. So
they are isomorphic to each other.

Because of this last fact, for each prime power q, we have the notation Fq for the unique
(up to isomorphism) finite field of size q. We shall see later that not all presentations of Fq are
equally pleasant, and we may wish to distinguish between them, but the broad picture for now
is that there is just one field of q elements.

Here’s a proof of the formula

∑

j|n

µ(j) =

{

1, n = 1,

0, n > 1.

From the definition of µ, we have for any positive integer n that

∑

j|n

µ(j) =
∑

j|n
j squarefree

µ(j) =
∑

j|m

µ(j),

where m is the largest squarefree divisor of n. Thus, it suffices to prove the formula for
squarefree numbers m. The formula is clearly correct for m = 1. Now assume it is true for
m, and let p be a prime that does not divide m. The divisors of pm fall into two disjoint sets,
those numbers j which divide m and those that don’t. The latter divisors are of the form pj,
where j | m. Thus, since µ(pj) = −µ(j), we have

∑

j|pm

µ(j) =
∑

j|m

µ(j) +
∑

j|m

µ(pj) =
∑

j|m

µ(j)−
∑

j|m

µ(j) = 0.

Thus, the formula follows by induction.
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