
PRIMALITY TESTING:

VARIATIONS ON A THEME OF LUCAS

CARL POMERANCE

Abstract. This survey traces an idea of Édouard Lucas that is a common el-
ement in various primality tests. These tests include those based on Fermat’s
little theorem, elliptic curves, Lucas sequences, and polynomials over finite fields,
including the recent test of Agrawal, Kayal, and Saxena. The Lucas idea may be
summed up as follows: build up a group so large that n must be prime.

1. Introduction

In 1801, Carl Friedrich Gauss wrote:

“The problem of distinguishing prime numbers from composite num-
bers, and of resolving the latter into their prime factors, is known
to be one of the most important and useful in arithmetic. It has
engaged the industry and wisdom of ancient and modern geometers
to such an extent that it would be superfluous to discuss the prob-
lem at length. Nevertheless we must confess that all methods that
have been proposed thus far are either restricted to very special cases
or are so laborious and difficult that even for numbers that do not
exceed the limits of tables constructed by estimable men, they try
the patience of even the practiced calculator. And these methods do
not apply at all to larger numbers... Further, the dignity of science
itself seems to require that every possible means be explored for the
solution of a problem so elegant and so celebrated.”

In this call to arms, Gauss separates the problem of prime factorization into two
problems: recognizing primes and factoring composites. This article discusses the
first of these, the problem known as primality testing. In the following we take a
historical perspective, but not necessarily in a normal historical progression: the
order of topics is chosen for mathematical, not historical reasons. For pointers to
more scholarly works, see the comments at the end of the article.

Let us begin our investigation.

2. Two elementary theorems

Wilson: If p is prime, then (p − 1)! ≡ −1 (mod p).

Fermat: If p is prime and p - a, then ap−1 ≡ 1 (mod p).

How efficient are these as primality criteria? It would seem neither is, since they
both involve gigantic numbers when p is large.
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For Fermat though, the repeated squaring algorithm is quite efficient. Use the
recursion

ak mod n =

{

(

ak/2 mod n
)2

mod n, if k is even,

a
(

a(k−1)/2 mod n
)2

mod n, if k is odd.

Let’s check out Fermat for a = 2, p = 91. Backing down from exponent 90, we get
90, 45, 44, 22, 11, 10, 5, . . . ; well perhaps “5” is low enough to get started:

25 ≡ 32 (mod p), 210 ≡ 23 (mod p), 211 ≡ −45 (mod p)

222 ≡ 23 (mod p), 244 ≡ −17 (mod p), 245 ≡ −34 (mod p)

290 ≡ 64 (mod p).

Huh? So, we conclude that it is efficient to check Fermat, but the theorem is wrong!?
Actually, the theorem is correct, and the calculation proves that 91 is composite!
Not boring you with the calculation, but if we try it we find that

2340 ≡ 1 (mod 341).1

What should be concluded?
Answer: 341 is prime or composite.
It is good we mathematicians do not routinely reason from the converse; indeed

341 = 11 × 31.
So the converse of Fermat is false in general. But note that the converse of Wilson

is correct: If (n − 1)! ≡ −1 (mod n) and n > 1, then n is prime.

Unfortunately, we know no fast way to check the Wilson congruence.
Returning to Fermat, it seems the converse is almost true. That is, numbers such

as 341, known as (base 2) pseudoprimes, appear numerically to be fairly rare. Can
we find some way to turn Fermat around and make it a primality-proving engine?
An answer was supplied in 1876.

Lucas: Suppose that n > 1 and a are integers with

an−1 ≡ 1 (mod n) and

a(n−1)/q 6≡ 1 (mod n) for all primes q | n − 1.

Then n is prime.

Proof. Let h be the multiplicative order of a in the group (Z/nZ)×. The first
congruence implies that h | n− 1. The second batch of congruences imply that h is
not a proper divisor of n − 1. Thus, h = n − 1 and so ϕ(n) = |(Z/nZ)×| ≥ n − 1.
We conclude that n is prime. (Here, ϕ denotes Euler’s function.) 2

This delightfully simple and elegant idea of Lucas has been the basis of essentially
all of primality testing. The Lucas idea can be summed up as follows: Build up a

group that is so large that n is forced to be prime.

But first, why do we need to go further, isn’t this the converse of Fermat that we
were looking for? Perhaps, but we would need to resolve the following questions:

(1) If n is prime, is there a number a satisfying the Lucas hypothesis?
(2) If so, how do we find such a number a?

1It can be seen even more easily that 2340
≡ 1 (mod 341) as follows. Note that 3×341 = 1023 =

210
− 1, so that 210

≡ 1 (mod 341), which upon taking the 34th power of both sides, yields the
stated congruence.
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(3) If we have a number a, how do we find the primes q | n − 1 needed for the
second batch of congruences?

For question 1, we are asking: if n is prime, must (Z/nZ)× be a cyclic group?
Yes, by a theorem of Gauss. This is known in elementary number theory as the
theorem on the primitive root.

For question 2, we are asking for an algorithm to find a primitive root. A sequen-
tial search starting with a = 2 is conjectured to succeed quickly, and this is provable
assuming the Generalized Riemann Hypothesis (GRH). The probabilistic algorithm
of choosing random numbers a is very fast in practice and in theory. (The random-
ness involved is in finding the proof that n is prime; there should be no doubt in the
conclusion.)

For question 3, we are asking how to find the complete prime factorization of
n − 1. To quote Shakespeare’s Hamlet, “Aye, there’s the rub.”

Well, for some numbers n it is not so hard, for example n = 22k
+ 1.

Pepin: If k ≥ 1, then n = 22k
+ 1 is prime if and only if 3(n−1)/2 ≡ −1 (mod n).

Proof. If the congruence holds, then Lucas implies n is prime. Say n is prime. Then
n ≡ 5 (mod 12) so that 3 is a quadratic nonresidue mod n. The congruence is then
just Euler’s criterion. 2

3. The Lucas idea applied to elliptic curve groups

For p > 3 prime and a, b integers with 4a3 + 27b2 6≡ 0 (mod p), consider the set
of nonzero triples (x : y : z) mod p with

y2z ≡ x3 + axz2 + bz3 (mod p),

where the notation (x : y : z) means that for c 6≡ 0 (mod p), we identify (x : y : z)
with (cx : cy : cz). We can create a group structure on these triples, with the identity
being (0 : 1 : 0). (The group law involves some simple arithmetic operations and
comes from the geometric chord-tangent method for elliptic curves.)

Hasse, Schoof: The order of the group is in the interval

(p + 1 − 2
√

p, p + 1 + 2
√

p);

this group order can be quickly computed.

Say we have a number n that we think is prime, we choose a, b with gcd(4a3 +
27b2, n) = 1, we compute the order h of the elliptic curve “group” (as if n were
prime), we have the complete prime factorization of h, and we have a point P on
the curve of order h, found as with Lucas. Then if h ∈ (n+1−2

√
n, n+1+2

√
n),

then n is prime. (If the order of the group is not in this interval, then n must be
composite and P need not be found.)

This is the basic idea behind ECPP (Elliptic Curve Primality Proving), due to
Goldwasser & Kilian, Atkin, and Elkies, though you can see it is really just Lucas
in another setting. The advantage is that while n − 1 may be hard to factor, the
number h may be easily factored. And if it isn’t, another elliptic curve can provide
a fresh chance.

Note: The elliptic curve group need not be cyclic, but it often is, and almost
always is nearly so. Many tweaks make this idea into a better algorithm. For
example, the factorization of h may include a very large prime factor, but is it really
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prime? So, the method is iterated. As it stands, ECPP is the fastest algorithm in
practice for “general” numbers.

4. Back to the original Fermat/Lucas setting

What if one only has a portion of n−1 factored? The Lucas result can be extended
if this portion is large enough.

Proth, Pocklington, Brillhart, Lehmer, & Selfridge (PPBLS): Suppose

a, F, n > 1 are integers, F | n−1, F >
√

n,

aF ≡ 1 (mod n) and

gcd(aF/q−1, n) = 1 for all primes q | F.

Then n is prime.

Proof. Let p denote the least prime factor of n. The hypotheses imply that a has
order F in (Z/pZ)×, so that p > F . But F >

√
n, so n has no prime factors below√

n, which implies that n is prime. 2

Note that if n is prime and g is a cyclic generator of (Z/nZ)×, then g(n−1)/F has
order F . So, finding an element a of order F as in the theorem is at least as easy
as finding a cyclic generator of the group. But now, we only have to factor part of
n − 1.

Here are two families of numbers for which this method works well. They appear
in a recent article of Denomme and Savin [5], where the authors found primality
tests involving elliptic curves.

Example 1. Say nl = 22l − 22l−1

+ 1, where l is a positive integer. For example,
n1 = 3, n2 = 13, n3 = 241, etc. Can we find a fully factored divisor Fl of nl −1 with

Fl >
√

nl? That’s easy, take Fl = 22l−1

. Good, but can we easily find a candidate

for the number a in the PPBLS result? Let us try al = 7(nl−1)/Fl mod nl. Assume
that l ≥ 2, so that nl ≡ 1 (mod 4). Also note that nl ≡ 3 (mod 7) when l is odd
and nl ≡ 6 (mod 7) when l is even. Thus, if l ≥ 2 we have the Jacobi symbol
( 7

nl
) = −1. Let us prove: for l ≥ 2, nl is prime if and only if

7(nl−1)/2 ≡ −1 (mod nl). (1)

Indeed, if this congruence holds, then both

aFl
l ≡ 1 (mod nl), gcd(a

Fl/2
l − 1, n) = 1,

so that nl is prime by PPBLS. Conversely, if nl is prime, (1) holds by the Euler
criterion for quadratic residues. 2

Example 2. Let ml = 32l −32l−1

+1. Now we can take Fl = 32l−1

. And we have the
following result of Gauss [6] from his collected works (thanks are due to Paul Pollack
for the reference): Let p be a prime that is 1 mod 3, so that there are integers L,M
unique up to sign with 4p = L2 + 27M2. Then 2 is a cube (mod p) if and only if L
and M are both even. Well,

4ml = (32l−1 − 2)2 + 27(32l−1
−1)2,
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so that if ml is a prime, then 2 is not a cube modml. Let a = 2(ml−1)/Fl mod ml in
the PPBLS test, so that: ml is prime if and only if

2ml−1 ≡ 1 (mod ml), gcd(2(ml−1)/3 − 1,ml) = 1.

5. The Fibonacci numbers and the $620 problem

Lucas, and later Lehmer also explored using the Fibonacci sequence and more
general Lucas sequences to test n for primality.

For example, if p ≡ ±2 (mod 5), then up+1 ≡ 0 (mod p), where uk denotes the
kth Fibonacci number. This can be turned into a primality criterion for numbers
n ≡ ±2 (mod 5) provided you have the prime factorization of n + 1, or a large
factored portion. For n 6≡ ±2 (mod 5) we can use other Lucas sequences.

If n is an odd composite number and D is 1 mod 4, |D| minimal with (D/n) = −1,
must either

2n−1 6≡ 1 (mod n)

or must the rank of appearance of n in the basic Lucas sequence with discriminant
D not be a divisor of n + 1?

Prove this and earn $620 ($500 from me, $100 from Wagstaff, $20 from Selfridge).
The first counterexample found (with the prime factorization of n) also earns $620
($500 from Selfridge, $100 from Wagstaff, and $20 from me). In particular, you
can earn $620 if you are the first to come up with a composite number n and its
prime factorization such that n ≡ ±2 (mod 5), the (n + 1)st Fibonacci number is 0
(mod n), and 2n−1 ≡ 1 (mod n).

6. Generalizing Lucas sequences: the finite fields test

Working with a Lucas sequence mod p, where the characteristic polynomial f(x) is
quadratic and irreducible mod p, is essentially working in the finite field Fp[x]/(f(x))
of order p2. Taking this view there is no reason to restrict f to degree 2.

Say we have a monic polynomial f ∈ (Z/nZ)[x] of degree d with

xnd ≡ x (mod f(x)), gcd(xnd/q − x, f(x)) = 1 for each prime q | d. (2)

If n is prime, these conditions hold if and only if f is irreducible over Fn = Z/nZ.
Thus, we have an easily checkable criterion that would allow us to create the finite
field Fnd if n were prime. This idea lies behind Lenstra’s finite fields primality test.

Lenstra: Suppose n, d are positive integers with n > 1 and f ∈ (Z/nZ)[x] monic of

degree d. Suppose too that F | nd−1 and F >
√

n. Say g ∈ (Z/nZ)[x] satisfies

(1) g(x)F ≡ 1 (mod f(x)),

(2) gcd(g(x)F/q−1, f(x)) = 1 for each prime q | F ,

(3) each elementary symmetric polynomial in g(x)nj
for 0 ≤ j ≤ d−1 is in

Z/nZ.

If none of the residues nj mod F for 0 ≤ j ≤ d−1 are proper factors of n, then n is

prime.

Proof. Let p be the least prime factor of n. We’ll write bars over objects to indicate
they’re taken mod p. Let f̄1 be an irreducible factor of f̄ in Fp[x]. The first two
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items in the theorem imply that α := ḡ has multiplicative order F in the finite field
K = Fp[x]/(f̄1(x)). Consider the polynomial

h(t) = (t − α)(t − αn) · · · (t − αnd−1

)

in K[t]. The third item implies that h(t) ∈ Fp[t]. Then h(αp) = 0, so that αp = αnj

for some j, and so p ≡ nj (mod F ). If n is composite, then p ≤ √
n < F , so

p = nj mod F . Thus, if no nj mod F is a proper factor of n, then n is prime. 2

Suppose n is prime. If f satisfies (2) and g is an element in the finite field
(Z/nZ)[x]/(f(x)) of multiplicative order F , then all three items in the theorem
hold.

Note that it can be easier to find a large factored divisor of nd−1 then it is of
n−1. For example, if d = 2, then we automatically have 24 | n2−1 (assuming n is
coprime to 6). If d = 12, we automatically have 24 · 32 · 5 · 7 · 13 dividing n12−1, and
so on. In fact, there is always a fairly small d yielding a large cheap factor.

Adleman, Pomerance, & Rumely: There is a value of d with

d < (log n)c log log log n

such that the least common multiple of the prime powers q with ϕ(q) | d exceeds
√

n.

Here c is an absolute constant.

In particular, the finite fields test of Lenstra can be made into a probabilistic
algorithm with expected time of (log n)O(log log log n) to decide if n is prime. To be

polynomial time, the runtime estimate should be (log n)O(1). The finite fields test
just misses!2

7. Mersenne primes

The finite fields test contains the Lucas–Lehmer test for Mersenne primes.

Lucas & Lehmer: Suppose p is an odd prime and n = 2p−1. Then n is prime if

and only if

x(n+1)/2 ≡ −1 (mod x2 − 4x + 1)

in (Z/nZ)[x].
Proof. We apply the finite fields test with f(x) = x2 − 4x + 1, g(x) = x and
F = n+1. Suppose the congruence above holds. Then g(x)F ≡ 1 (mod f(x)) and

g(x)F/2 ≡ −1 (mod f(x)), so that g(x)F/2 − 1 is a unit mod f(x). From g(x)F ≡ 1
(mod f(x)) we have g(x)g(x)n ≡ 1 (mod f(x)), and from x−1 ≡ 4− x (mod f(x)),
we have g(x) + g(x)n ≡ x + x−1xn+1 ≡ x + x−1 ≡ 4 (mod f(x)). Thus, the two
elementary symmetric polynomials in g(x), g(x)n are in Z/nZ. Since n0 mod F = 1
and n1 mod F = n are not proper factors of n, we conclude that n is prime.

Now assume that n = 2p − 1 is prime. Since n ≡ 7 (mod 24), we have ( 2
n) =

1, ( 3
n) = −1. In particular f(x) = x2 − 4x + 1 is irreducible mod n. We compute

(x − 1)n+1 in the finite field K = Fn[x]/(f(x)) two ways. Using (x − 1)2 = 2x,

2The joke I like to tell is that though it has been proved that log log log n goes to infinity with
n, it has never been observed doing so.
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2(n−1)/2 = 1, and xn = 4 − x,

(x − 1)n+1 =
(

(x − 1)2
)(n+1)/2

= (2x)(n+1)/2 = 2x(n+1)/2 and

(x − 1)n+1 = (x − 1)n(x − 1) = (xn − 1)(x − 1) = (3 − x)(x − 1) = −2.

Equating these two expressions, we have the congruence in the theorem. 2

This does not look like the familiar Lucas–Lehmer test, which is as follows: For

p an odd prime, let n = 2p − 1, and consider the sequence (`j), where `0 = 4 and

`j+1 = `2
j − 2 mod n. Then n is prime if and only if `p−2 = 0.

However, it is easy to prove the equivalence: Let R = (Z/nZ)[x]/(x2 −4x+1). In

the ring R, x(4 − x) = 1. Thus, x(n+1)/2 = −1 if and only if x(n+1)/2−k = −x−k =
−(4 − x)k for any integer k. Use this when k = (n + 1)/4, so that x(n+1)/2 = −1 if

and only if x(n+1)/4 +(4−x)(n+1)/4 = 0. Let `j = x2j
+(4−x)2

j
. One easily checks

that `0 = 4 and `j+1 = `2
j − 2, so this is the same sequence `j as in the traditional

Lucas–Lehmer test. 2

The reader might have noticed that the sequence

vj = xj + (4 − x)j

in the ring R is the Lucas sequence 4, 14, 52, . . . mod n obeying the recurrence
vj+1 = 4vj − vj−1. We have `j = v2j .

8. Drawbacks

There are drawbacks with each of the tests considered so far:
The basic Lucas test or the PPBLS test needs a large factored divisor of n−1,

and randomness is often used to find a number a.
The elliptic curve test uses randomness and it has not been rigorously proved to

run in expected polynomial time.
The finite fields test uses randomness and it is not a polynomial time algorithm.
From a theoretical perspective what would be ideal is a deterministic, polynomial

time algorithm. It is interesting that the basic idea of Lucas settles this immediately
if one is prepared to assume the GRH. If p is an odd prime, we not only have the
Fermat congruence ap−1 ≡ 1 (mod p) when p - a, but it is also true that the only
square roots of 1 (mod p) are ±1. Putting these two thoughts together and writing

p−1 = 2st, where t is odd, we have that either at ≡ 1 (mod p) or a2it ≡ −1 (mod p)
for some 0 ≤ i ≤ s − 1.

Given an odd number n > 1 where n−1 = 2st with t odd, let Gn be the subgroup
of (Z/nZ)× generated by those residues a such that either

at ≡ 1 (mod n) or a2it ≡ −1 (mod n) for some 0 ≤ i ≤ s − 1. (3)

It follows from a result of E. Bach and predecessors that assuming the GRH, the
group (Z/nZ)× is generated by its members smaller than 3(log n)2. Further, it
basically follows from a result of M. Rabin that, unconditionally, if n is an odd
composite, the group Gn is a proper subgroup of (Z/nZ)× (and has index at least 4
when n > 9). Thus, assuming the GRH, if n > 1 is odd, then n is prime if and only
if (3) holds for all integers 1 ≤ a ≤ min{n− 1, 3(log n)2}. In fact, this last assertion
is true with coefficient 3 replaced with 2. The first to give a GRH-conditional test
like this was G. Miller.
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Again, the influence of Lucas is unmistakable: just build up a group that is too
large for n to be composite.

But, we still have the drawback that this deterministic, polynomial time test
requires the assumption of the GRH. This brings us to our final topic.

9. The AKS test

In 2002, for their senior thesis, N. Kayal and N. Saxena solved the problem with
their advisor, M. Agrawal. Let log2 denote the base-2 logarithm.

Agrawal, Kayal, & Saxena: Suppose n, r are coprime positive integers such that

n > 1 and the multiplicative order of r (mod n) ∈ (Z/nZ)× exceeds (log2 n)2. If, in

(Z/nZ)[x],
(x + a)n ≡ xn + a (mod xr − 1)

for each integer a in [0,
√

ϕ(r) log2 n], then either n has a prime factor in this

interval or n is a prime power.

It is not so hard to show via an elementary method that a number r that has the
requisite multiplicative order exists below (log2 n)5. Further, it is simple to check
numerically if a number is a power of a smaller number or if a number has a small
prime factor. Since the congruence in the theorem holds for all integers a when n is
prime, the theorem can be turned into a deterministic, polynomial time algorithm
to recognize primes. Finally, we have a resolution to the quest of Gauss!

Using Fast Fourier Transforms for integer arithmetic and polynomial arithmetic,
it is possible to show that the running time of the AKS test is O(r1.5(log n)3) times
some constant power of log log n. Thus, with r < (log2 n)5, the runtime is essentially
bounded by (log n)10.5.

Heuristically, there should be a value for r near (log n)2 leading to the complexity
(log n)6, but the best that has been proved for r is a little lower than (log n)3, leading
to (log n)7.5 for the complexity of the test.

The AKS test is based on the polynomials xr − 1, where the condition on the
multiplicative order of r (mod n) guarantees when n is prime that xr − 1 has an
irreducible factor over Fn of large degree. Might we use other polynomials than
xr − 1? Indeed we can.

Lenstra & Pomerance: Let n > 1 be an integer. Suppose f(x) ∈ (Z/nZ)[x] is a

monic polynomial of degree d > (log2 n)2 with f(xn) ≡ 0 (mod f(x)) and such that

(2) holds. If

(x + a)n ≡ xn + a (mod f(x))

for each integer a ∈ [0,
√

d log2 n], then either n is divisible by a prime in this

interval or n is a prime power.

The proofs of this theorem and the AKS theorem both involve building up large
groups using the given information. Sound familiar? Again it is the idea of Lucas.

One can show, with considerable effort, that there is a fast algorithm to produce a
valid f(x) for the theorem with degree ≤ 2(log2 n)2 (or prove n composite along the
way). It thus follows that we have a deterministic algorithm to test n for primality
that runs in about (log n)6 elementary operations.3

3As of yet, tests in the AKS family have not proven to be computer-practical. They are of
interest as theorems in the field of algorithmic number theory.
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Our difficulties with producing an f(x) would be obviated if only one could quickly
and deterministically produce an irreducible polynomial over a finite field of given
degree. However, we know no such method, even for degree 2! Our proof uses the
cyclotomic periods that Gauss used in his proof on the constructibility of regular n-
gons. We have found it pleasing to use this signature result of Gauss to make progress
on his call to arms of distinguishing prime numbers from composite numbers.

10. The last word

This article leaves much unsaid—it would take a book to give a thorough synopsis
of primality testing. For example, [2]. Further, the emphasis in this article has been
on the simplicity and commonality of some of the basic ideas. For a more accurate
historical treatment, see [3], [4] (thanks due to Hugh Williams for informing me of
these), and [8]. For many more details on the AKS test, see not only the book [2],
but the original paper of Agrawal, Kayal, and Saxena [1] and the survey paper of
Granville [7]. Lenstra and I are still working on our improvement of the AKS test,
though a proof of the theorem above can be found in [2] and [7]. Finally, [2] and
the Internet have information about implementations and records.
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