

Exercises

- 1. Suppose F is a finite field with q elements and let $f(x) \in F[x]$ have degree d. Show that f is irreducible if and only if the monic gcd of f(x) and $x^{q^j} - x$ is 1 for each j < d.
- 2. Suppose F is a finite field with q elements and let $f(x) \in F[x]$ have degree d. Show that f is irreducible if and only if $f(x) \mid x^{q^d} - x$ and the monic gcd of f(x) and $x^{q^j} - x$ is 1 for each j < d with $j \mid d$.
- 3. Suppose p is a prime and F is a finite field with p^{15} elements. We know that the polynomial $x^{p^{15}} x$ has every element of F as a root. Let K be the set of roots in F of the polynomial $x^{p^3} x$. Show that K is a subfield of F.
- 4. Let $F = \mathbf{Z}/(2)$. Set $K = F[x]/(x^3 + x + 1)$ and $L = F[x]/(x^3 + x^2 + 1)$. Then both K and L are 8-element fields, so must be isomorphic. Find an isomorphism from K to L.