## Math 75 - Homework \#3

posted April 11, 2014; due Monday, April 14, 2014

## Exercises

1. Suppose $F$ is a finite field with $q$ elements and let $f(x) \in F[x]$ have degree $d$. Show that $f$ is irreducible if and only if the monic gcd of $f(x)$ and $x^{q^{j}}-x$ is 1 for each $j<d$.
2. Suppose $F$ is a finite field with $q$ elements and let $f(x) \in F[x]$ have degree $d$. Show that $f$ is irreducible if and only if $f(x) \mid x^{q^{d}}-x$ and the monic gcd of $f(x)$ and $x^{q^{j}}-x$ is 1 for each $j<d$ with $j \mid d$.
3. Suppose $p$ is a prime and $F$ is a finite field with $p^{15}$ elements. We know that the polynomial $x^{p^{15}}-x$ has every element of $F$ as a root. Let $K$ be the set of roots in $F$ of the polynomial $x^{p^{3}}-x$. Show that $K$ is a subfield of $F$.
4. Let $F=\mathbf{Z} /(2)$. Set $K=F[x] /\left(x^{3}+x+1\right)$ and $L=F[x] /\left(x^{3}+x^{2}+1\right)$. Then both $K$ and $L$ are 8 -element fields, so must be isomorphic. Find an isomorphism from $K$ to $L$.
