Math 75 – Homework #2 posted April 7, 2014; due Wednesday, April 9, 2008

Exercises

- 1. Suppose F is a field, $f \in F[x]$ and $\beta \in F$. Show that $x \beta \mid f(x)$ in F[x] if and only if $f(\beta) = 0$.
- 2. Suppose F is a field, $f \in F[x]$ and $\deg(f) = d$. Show that f has at most d roots in F.
- 3. Show that the last exercise need not hold if F is not a field, by considering the nonfield $R = \mathbf{Z}/(8)$ and the polynomial $x^2 1$ in R[x].
- 4. Let $F = \mathbf{Z}/(2)$. Find all irreducible polynomials in F[x] of degrees 1, 2, 3, and 4.
- 5. Construct a finite field with 9 elements, by using the polynomial $x^2 + 1 \in (\mathbb{Z}/(3))[x]$. Write a multiplication table for the field.
- 6. In a finite group G with operation \circ , the order of an element g is the least positive integer k for which $g \circ g \circ \cdots \circ g$ (with k factors of g here) is the group identity. For example, in the additive group $\mathbf{Z}/(6)$, the order of 1 is 6, the order of 2 is 3, the order of 4 is also 3, etc. Another example: in the multiplicative group of the finite field $\mathbf{Z}/(5)$, the order of 1 is 1, the order of 2 is 4, etc. In the multiplicative group of the finite field with 9 elements that you constructed in the previous exercise, find the order of each of the 8 elements.