Math 75 - Homework \#2

posted April 7, 2014; due Wednesday, April 9, 2008

Exercises

1. Suppose F is a field, $f \in F[x]$ and $\beta \in F$. Show that $x-\beta \mid f(x)$ in $F[x]$ if and only if $f(\beta)=0$.
2. Suppose F is a field, $f \in F[x]$ and $\operatorname{deg}(f)=d$. Show that f has at most d roots in F.
3. Show that the last exercise need not hold if F is not a field, by considering the nonfield $R=\mathbf{Z} /(8)$ and the polynomial $x^{2}-1$ in $R[x]$.
4. Let $F=\mathbf{Z} /(2)$. Find all irreducible polynomials in $F[x]$ of degrees $1,2,3$, and 4 .
5. Construct a finite field with 9 elements, by using the polynomial $x^{2}+1 \in$ $(\mathbf{Z} /(3))[x]$. Write a multiplication table for the field.
6. In a finite group G with operation \circ, the order of an element g is the least positive integer k for which $g \circ g \circ \cdots \circ g$ (with k factors of g here) is the group identity. For example, in the additive group $\mathbf{Z} /(6)$, the order of 1 is 6 , the order of 2 is 3 , the order of 4 is also 3, etc. Another example: in the multiplicative group of the finite field $\mathbf{Z} /(5)$, the order of 1 is 1 , the order of 2 is 4 , etc. In the multiplicative group of the finite field with 9 elements that you constructed in the previous exercise, find the order of each of the 8 elements.
