Math 75 – Homework #1

posted March 27, 2014; due Monday, March 31, 2014

Exercises

- 1. Consider the set F^n of all vectors \mathbf{v} with n coordinates and entries in the finite field F of 2 elements. We say vector $\mathbf{v} \in F^n$ is orthogonal to vector $w \in F^n$ if the dot product $v \cdot w$ is 0.
 - (a) Show that the codewords in the (8,7) parity check code are exactly the vectors in F^8 orthogonal to (1, 1, 1, 1, 1, 1, 1, 1).
 - (b) Find 3 vectors in F^6 such that the codewords for the triple parity check code are exactly those vectors orthogonal to all 3 of your vectors.
 - (c) Try to describe the triple repetition code in this way.
- 2. Show that $\mathbf{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$ is a field.
- 3. Let F be a field. Suppose A and B are nonzero polynomials over F (that is, nonzero elements of F[x]). Suppose A has degree j and B has degree k. Prove that the product AB has degree k + j.
- 4. Let $F = \mathbb{Z}/(2)$, and let $M = x^2 + 1$ and $N = x^2 + x + 1$. Each of the systems F[x]/(M) and F[x]/(N) has four elements. For each system, list the four elements and write out the full 4×4 multiplication table. Exactly one of these two systems is field. Decide which one is not a field and prove that it is not.