Math 75 - Homework \#1

posted March 27, 2014; due Monday, March 31, 2014

Exercises

1. Consider the set F^{n} of all vectors \mathbf{v} with n coordinates and entries in the finite field F of 2 elements. We say vector $\mathbf{v} \in F^{n}$ is orthogonal to vector $w \in F^{n}$ if the dot product $v \cdot w$ is 0 .
(a) Show that the codewords in the $(8,7)$ parity check code are exactly the vectors in F^{8} orthogonal to ($1,1,1,1,1,1,1,1$).
(b) Find 3 vectors in F^{6} such that the codewords for the triple parity check code are exactly those vectors orthogonal to all 3 of your vectors.
(c) Try to describe the triple repetition code in this way.
2. Show that $\mathbf{Q}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbf{Q}\}$ is a field.
3. Let F be a field. Suppose A and B are nonzero polynomials over F (that is, nonzero elements of $F[x]$). Suppose A has degree j and B has degree k. Prove that the product $A B$ has degree $k+j$.
4. Let $F=\mathbf{Z} /(2)$, and let $M=x^{2}+1$ and $N=x^{2}+x+1$. Each of the systems $F[x] /(M)$ and $F[x] /(N)$ has four elements. For each system, list the four elements and write out the full 4×4 multiplication table. Exactly one of these two systems is field. Decide which one is not a field and prove that it is not.
