Math 75 - Homework

Posted May 23, 2014; due Wednesday, May 28, 2014

1. Suppose a is an integer larger than 1 and p is an odd prime that does not divide $a^{2}-1$. Show that $n=\left(a^{2 p}-1\right) /\left(a^{2}-1\right)$ is a pseudoprime base a. For example, with $a=2$ and $p=5$, we see that $\left(2^{10}-1\right) /\left(2^{2}-1\right)=341$ is a pseudoprime base 2 .
2. Prove that a composite number n is a Carmichael number if and only if n is squarefree and for each prime $p \mid n$ we have $p-1 \mid n-1$.
3. Using the previous exercise, prove that a Carmichael number must be odd and have at least 3 prime factors.
