${f Math}\ 75-{f Homework}$

Posted May 16, 2014; due Wednesday, May 21, 2014

1. Consider the Euclidean algorithm applied to $a, b \in K[x]$, where K is a field and deg $a > \deg b \ge 0$. Let

$$r_{-1} = a$$
, $r_0 = b$, $u_{-1} = 1$, $u_0 = 0$, $v_{-1} = 0$, $v_0 = 1$.

If the r's, u's, and v's have been defined for subscripts smaller than j and $r_j \neq 0$, let q_j be the quotient when r_{j-1} is divided into r_{j-2} , and let

$$r_j = r_{j-2} - q_j r_{j-1}, \quad u_j = u_{j-2} - q_j u_{j-1}, \quad v_j = v_{j-2} - q_j v_{j-1}.$$

This continues until some $r_k = 0$. Prove that the sequence of degrees of the polynomials $r_{-1}, r_0, \ldots, r_{k-1}$ is strictly decreasing, and for the polynomials u_j, v_j , their degrees, starting with j = 1, are strictly increasing.

2. With notation as in the previous problem, show that

$$r_{j-1}u_j - r_ju_{j-1} = \pm b, \ r_{j-1}v_j - r_jv_{j-1} = \pm a, \ u_{j-1}v_j - u_jv_{j-1} = \pm 1.$$

- 3. Suppose that K is finite field with $2^k = n + 1$ elements and α is a primitive element of K. Show that if j is a positive integer and $2^{\lfloor k/2 \rfloor} j < n$, then the degree of the minimum polynomial of α^j over \mathbb{F}_2 is k. (Hint: Show that α^j has more than k/2 conjugates.)
- 4. With notation as above, show that if $1 \leq i < j$ are odd integers and $2^{\lfloor k/2 \rfloor} j < n$, then the minimum polynomials for α^i and α^j over \mathbb{F}_2 are different.
- 5. With notation as above, show that if $k \ge 3$ and $2t \le \sqrt{n} + 1$ then the dimension of BCH(k, t) is n tk.