Math 75 - Homework

Posted May 16, 2014; due Wednesday, May 21, 2014

1. Consider the Euclidean algorithm applied to $a, b \in K[x]$, where K is a field and $\operatorname{deg} a>\operatorname{deg} b \geq 0$. Let

$$
r_{-1}=a, \quad r_{0}=b, \quad u_{-1}=1, \quad u_{0}=0, \quad v_{-1}=0, \quad v_{0}=1 .
$$

If the r 's, u 's, and v 's have been defined for subscripts smaller than j and $r_{j} \neq 0$, let q_{j} be the quotient when r_{j-1} is divided into r_{j-2}, and let

$$
r_{j}=r_{j-2}-q_{j} r_{j-1}, \quad u_{j}=u_{j-2}-q_{j} u_{j-1}, \quad v_{j}=v_{j-2}-q_{j} v_{j-1} .
$$

This continues until some $r_{k}=0$. Prove that the sequence of degrees of the polynomials $r_{-1}, r_{0}, \ldots, r_{k-1}$ is strictly decreasing, and for the polynomials u_{j}, v_{j}, their degrees, starting with $j=1$, are strictly increasing.
2. With notation as in the previous problem, show that

$$
r_{j-1} u_{j}-r_{j} u_{j-1}= \pm b, \quad r_{j-1} v_{j}-r_{j} v_{j-1}= \pm a, \quad u_{j-1} v_{j}-u_{j} v_{j-1}= \pm 1
$$

3. Suppose that K is finite field with $2^{k}=n+1$ elements and α is a primitive element of K. Show that if j is a positive integer and $2^{\lfloor k / 2\rfloor} j<n$, then the degree of the minimum polynomial of α^{j} over \mathbb{F}_{2} is k. (Hint: Show that α^{j} has more than $k / 2$ conjugates.)
4. With notation as above, show that if $1 \leq i<j$ are odd integers and $2^{\lfloor k / 2\rfloor} j<$ n, then the minimum polynomials for α^{i} and α^{j} over \mathbb{F}_{2} are different.
5. With notation as above, show that if $k \geq 3$ and $2 t \leq \sqrt{n}+1$ then the dimension of $\mathrm{BCH}(k, t)$ is $n-t k$.
