1. Let X be the disjoint union of two copies of the closed interval [-1, 1] in their usual subspace topology. Call them I_1 and I_2 . For any $x \in [-1, 1]$ let x_k denotes its representative in I_k . For every $x \neq 0$ let

$$[x] = \{x_1, x_2\}$$

and let $[0]_1 = \{0_1\}$ and $[0]_2 = \{0_2\}$. Let Y be the quotient space formed via these equivalence classes.

- (a) Prove Y is compact.
- (b) Prove Y is locally Euclidean.
- (c) Why is Y not a one dimensional manifold? Prove it
- 2. Let

$$X = R^2 - \{(0,0), (1,0)\}$$

in its usual subspace topology. Now we will decompose X into equivalence classes. When $y \neq 0$ let

$$[x, y] = \{(tx, ty) \mid 0 < t\}$$

and let

$$[-1,0] = \{(t,0) \mid t < 0\}$$

$$[1,0]_s = \{(t,0) \mid 0 < t < 1\}$$

$$[1,0]_b = \{(t,0) \mid 1 < t\}.$$

Let Y be the quotient space formed via these equivalence classes.

- (a) Prove Y is compact.
- (b) Prove Y is locally Euclidean.
- (c) Why is Y not a one dimensional manifold? Prove it.