Math 73/103 Assignment Three
Due Friday, November 4th

CLARIFICATION: Since at least one person found some legitimate ambiguities in their notes,
let me be clear about our terminology. Lebesgue measure, (R, 9, m), is the complete mea-
sure coming from the explicit outer measure m* we defined in lecture. In particular, 9 is
the o-algebra of all m*-measurable sets. A Lebesgue measurable function f : R — C is just
a function such that f~1(V) € 9 for any open set V C C. We say f is Borel if f~1(V) is
a Borel set in R for every open set V. We say f € L(R,9,m), or the f is Lebesgue inte-
grable, if f is measurable and [g | f|dm < co. We have also used the notation L™ (R, 9, m)
for the collection Lebesgue measurable functions f such that f > 0 everywhere.

1. Suppose that f € LY X, 9, m) is a Lebesgue integrable function on the real line. Let
€ > 0. Show that there is a continuous function g that vanishes outside a bounded interval
such that ||f — g1 <e.

2. Prove Lusin’s Theorem: Suppose that f is a Lebesgue measurable function on [a,b] C R.
Given € > 0, show that there is a closed subset K C [a, b] such that m([a,b] \ K) < € and
that f|x is continuous. (And unlike the version stated in lecture, we are not assuming f is
integrable.)

3. Suppose that p is a premeasure on an algebra A of sets in X. Let p* be the associated
outer measure.

(a) Show that p*(E) = p(F) for all £ € A.

(b) If 9t* is the o-algebra of p*-measurable sets, show that A C 99t*.

4. Suppose that f, — f in measure and that there is a ¢ € L£Y(X,9, 1) is such that
|fu(z)] < g(z) for all z € X. Show that f, — f in L'(X, 0, u).

5. Let m be Lebesgue measure on [0, 1] and let u be counting measure. Clearly, m << pu.
Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem.
Why is this not a counter-example to the Radon-Nikodym Theorem.



6. Prove the version of Fubini and Tonelli for complete measures stated in lecture: Let
(X, M, 1) and (Y, 9N, v) be complete o-finite measure spaces. Let (X x Y, £, A) be the com-
pletion of (X x Y, M ® M, u x v). Suppose that f is £-measurable and that either (a) f >0
or (b) f € LY()\). Show that f, and f¥ are measurable almost everywhere and in case (b),
then they are integrable almost everywhere. And, with suitable modifications on null sets,
T fY fedv and y — fX fYdu are measurable and even integrable in case (b). Then show
that the iterated integrals both agree with the double integral.

(Here is what I suggest, let g be a M ® M-measurable function that equals f almost
everywhere. Then prove the following lemmas:

(a) H E€e MM, and p x v(E) =0, then v(E,) = 0= pu(EY) for almost all x and y.

(b) If f is £-measurable and f = 0 A-almost everywhere, then f, and fY are integrable
almost everywhere and [, fYdpu=0= [, f,dv.)

7. Let v be a complex measure on (X, ).

(a) Show that there is a measure p and a measurable function ¢ : X — C so that |p| = 1,
and such that for all £ € 9N,

v(E) = [E odp. )

(Hint: write v = 11 — vy +i(v3 — vy) for measures v;. Put pg = v1 + v9 + v3+1v4. Then
o will satisfy (T) provided we don’t require |¢| = 1. You can then use without proof
the fact that any complex-valued measurable function h can be written as h = ¢ - |h|
with ¢ unimodular and measurable.)

(b) [Optional: Do not turn in] Show that the measure p above is unique, and that ¢
is determined almost everywhere [u]. (Hint: if g/ and ¢ also satisfy (1), then show
that ¢/ < u, and that % = 1 a.e. Also note that if ¢’ is unimodular and E € 9N,
then £ = (Ji_, E; where B, = {z € E: Rey/ >0}, By = {z € E: Rey¢/ <0},
Es={zeE:Imy¢ >0},and By ={z e F:Imy¢' <0}.)

Comment: the measure p in question 7 is called the total variation of v, and the usual
notation is |v|. It is defined by different methods in your text: see chapter 6. One can prove
facts like |v|(E) > |v(E)|, although one doesn’t always have |v|(E) = |v(E)|; this also proves
that even classical notation can be unfortunate.



8. [Optional: Do NOT turn in] Suppose that f : [a,b] — R is a bounded function. We want
to show that f is Riemann integrable if and only if m({ = € [a,b] : f is not continuous at z }) =
0. In [1, Theorem 2.28], Folland suggests the following strategy. Let

H(x) = lim(sup{ f(y) : [y —2[ <0}) and h(z) = lminf{ f(y) : |y — 2| <5 }.

(a) Show that f is continuous at x if and only if H(z) = h(z).

(b) In the notation of our proof in lecture that Riemann integral functions are Lebesgue
integrable, show that h = ¢ almost everywhere and H = u almost everywhere.

(c) Conclude that fabhdm =R/ " and ffHdm =R[ Z;f.
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