
Math 73/103 Assignment Three

Due Friday, November 4th

Clarification: Since at least one person found some legitimate ambiguities in their notes,
let me be clear about our terminology. Lebesgue measure, (R,M,m), is the complete mea-
sure coming from the explicit outer measure m∗ we defined in lecture. In particular, M is
the σ-algebra of all m∗-measurable sets. A Lebesgue measurable function f : R → C is just
a function such that f−1(V ) ∈ M for any open set V ⊂ C. We say f is Borel if f−1(V ) is
a Borel set in R for every open set V . We say f ∈ L1(R,M,m), or the f is Lebesgue inte-
grable, if f is measurable and

∫

R
|f | dm < ∞. We have also used the notation L+(R,M,m)

for the collection Lebesgue measurable functions f such that f ≥ 0 everywhere.

1. Suppose that f ∈ L1(X,M,m) is a Lebesgue integrable function on the real line. Let
ǫ > 0. Show that there is a continuous function g that vanishes outside a bounded interval
such that ‖f − g‖1 < ǫ.

2. Prove Lusin’s Theorem: Suppose that f is a Lebesgue measurable function on [a, b] ⊂ R.
Given ǫ > 0, show that there is a closed subset K ⊂ [a, b] such that m([a, b] \K) < ǫ and
that f |K is continuous. (And unlike the version stated in lecture, we are not assuming f is
integrable.)

3. Suppose that ρ is a premeasure on an algebra A of sets in X. Let ρ∗ be the associated
outer measure.

(a) Show that ρ∗(E) = ρ(E) for all E ∈ A.

(b) If M∗ is the σ-algebra of ρ∗-measurable sets, show that A ⊂ M
∗.

4. Suppose that fn → f in measure and that there is a g ∈ L1(X,M, µ) is such that
|fn(x)| ≤ g(x) for all x ∈ X. Show that fn → f in L1(X,M, µ).

5. Let m be Lebesgue measure on [0, 1] and let µ be counting measure. Clearly, m << µ.
Show that there is no function f satisfying the conclusion of the Radon-Nikodym Theorem.
Why is this not a counter-example to the Radon-Nikodym Theorem.

–1–



6. Prove the version of Fubini and Tonelli for complete measures stated in lecture: Let
(X,M, µ) and (Y,N, ν) be complete σ-finite measure spaces. Let (X × Y,L, λ) be the com-
pletion of (X × Y,M⊗N, µ× ν). Suppose that f is L-measurable and that either (a) f ≥ 0
or (b) f ∈ L1(λ). Show that fx and f y are measurable almost everywhere and in case (b),
then they are integrable almost everywhere. And, with suitable modifications on null sets,
x 7→

∫

Y
fx dν and y 7→

∫

X
f y dµ are measurable and even integrable in case (b). Then show

that the iterated integrals both agree with the double integral.
(Here is what I suggest, let g be a M ⊗ N-measurable function that equals f almost

everywhere. Then prove the following lemmas:

(a) If E ∈ M⊗N, and µ× ν(E) = 0, then ν(Ex) = 0 = µ(Ey) for almost all x and y.

(b) If f is L-measurable and f = 0 λ-almost everywhere, then fx and f y are integrable
almost everywhere and

∫

X
f y dµ = 0 =

∫

Y
fx dν.)

7. Let ν be a complex measure on (X,M).

(a) Show that there is a measure µ and a measurable function ϕ : X → C so that |ϕ| = 1,
and such that for all E ∈ M,

ν(E) =

∫

E

ϕdµ. (†)

(Hint: write ν = ν1 − ν2 + i(ν3 − ν4) for measures νi. Put µ0 = ν1 + ν2 + ν3 + ν4. Then
µ0 will satisfy (†) provided we don’t require |ϕ| = 1. You can then use without proof
the fact that any complex-valued measurable function h can be written as h = ϕ · |h|
with ϕ unimodular and measurable.)

(b) [Optional: Do not turn in] Show that the measure µ above is unique, and that ϕ

is determined almost everywhere [µ]. (Hint: if µ′ and ϕ′ also satisfy (†), then show
that µ′ ≪ µ, and that dµ′

dµ
= 1 a.e. Also note that if ϕ′ is unimodular and E ∈ M,

then E =
⋃

4

i=1
Ei where E1 = {x ∈ E : Reϕ′ > 0 }, E2 = {x ∈ E : Reϕ′ < 0 },

E3 = {x ∈ E : Imϕ′ > 0 }, and E4 = {x ∈ E : Imϕ′ < 0 }.)

Comment: the measure µ in question 7 is called the total variation of ν, and the usual
notation is |ν|. It is defined by different methods in your text: see chapter 6. One can prove
facts like |ν|(E) ≥ |ν(E)|, although one doesn’t always have |ν|(E) = |ν(E)|; this also proves
that even classical notation can be unfortunate.
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8. [Optional: Do NOT turn in] Suppose that f : [a, b] → R is a bounded function. We want
to show that f is Riemann integrable if and only ifm

(

{x ∈ [a, b] : f is not continuous at x }
)

=
0. In [1, Theorem 2.28], Folland suggests the following strategy. Let

H(x) = lim
δ→0

(

sup{ f(y) : |y − x| ≤ δ }
)

and h(x) = lim
δ→0

inf{ f(y) : |y − x| ≤ δ }.

(a) Show that f is continuous at x if and only if H(x) = h(x).

(b) In the notation of our proof in lecture that Riemann integral functions are Lebesgue
integrable, show that h = ℓ almost everywhere and H = u almost everywhere.

(c) Conclude that
∫ b

a
h dm = R

∫ b

a
f and

∫ b

a
H dm = R

∫ b

a
f .
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