Math 73/103: Homework on the Cauchy-Riemann Equations

- Problems 1–6 are due Monday, November 21, 2011.
- Problems 7–11 are just for your edification. (But just might appear on some sort of final exam.)
- The remaining problems are due the last day of class, Monday, November 30, 2011.

1. Suppose that Ω is a region in **C**, and that $f \in H(\Omega)$. Show that if f'(z) = 0 for all $z \in \Omega$, then f is constant.

Let Ω be a domain in **C** and assume that $f : \Omega \to \mathbf{C}$ is a function. Of course, we can view Ω as an open subset of \mathbf{R}^2 and define $u, v : \Omega \to \mathbf{R}$ by

$$u(x,y) := \operatorname{Re}(f(x+iy))$$
 and $v(x,y) = \operatorname{Im}(f(x+iy))$

We say that the Cauchy-Riemann Equations hold at $z_0 = x_0 + iy_0$ if the partial derivatives of u and v exist at (x_0, y_0) and

$$u_x(x_0, y_0) = v_y(x_0, y_0)$$
 and $u_y(x_0, y_0) = -v_x(x_0, y_0).$ (CR)

We often abuse notation slightly, and say that (CR) amounts to $f_y(z_0) = i f_x(z_0)$. (Just to be specific, $f_x(x_0 + iy_0) := u_x(x_0, y_0) + iv_x(x_0, y_0)$.)

2. Suppose that $f'(z_0)$ exists. Show that

$$f_x(z_0) = f'(z_0) = -if_y(z_0).$$
(1)

Conclude that the Cauchy-Riemann equations hold at z_0 whenever $f'(z_0)$ exists. Verify (1) when $f(z) = z^2$.

3. Suppose that Ω is a region and $f \in H(\Omega)$. Show that if f is real-valued in Ω , then f is constant.

4. Suppose that Ω is a region and $f \in H(\Omega)$. Suppose that $z \mapsto |f(z)|$ is constant on Ω . Show that f must be constant. (Consider $|f(z)|^2$.) We let f, u, v and Ω be as above. Define

$$F: \Omega \subset \mathbf{R}^2 \to \mathbf{R}^2 \quad \text{by} \quad F(x, y) = \big(u(x, y), v(x, y)\big).$$

Pretend that you remember that F is differentiable at $(x_0, y_0) \in \Omega$ if there is a linear function $L : \mathbf{R}^2 \to \mathbf{R}^2$ such that

$$\lim_{(h,k)\to(0,0)}\frac{\|F(x_0+h,y_0+k)-F(x_0,y_0)-L(h,k)\|}{\|(h,k)\|}=0,$$

in which case, the partials of u and v must exist and L is given by the Jacobian Matrix

$$[L] = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}.$$

(Of course, here $||(x,y)|| = \sqrt{x^2 + y^2} = |x + iy|.)$

5. Let f, F, u, v and Ω be as above. Let $z_0 = x_0 + iy_0 \in \Omega$. Show that $f'(z_0)$ exists if and only if the Cauchy-Riemann equations hold at z_0 and F is differentiable at (x_0, y_0) . (Hint: if we let z = h + ik and if T is given by the matrix

$$[T] = \begin{pmatrix} u_x(x_0, y_0) & -v_x(x_0, y_0) \\ v_x(x_0, y_0) & u_x(x_0, y_0) \end{pmatrix},$$

then

$$||F(x_0 + h, y_0 + k) - F(x_0, y_0) - T(h, k)|| = |f(z + z_0) - f(z_0) - \omega z|,$$

where $\omega = u_x(x_0, y_0) + iv_x(x_0, y_0) = f_x(z_0)$. Then remember (1).)

Problem #5 has an important Corollary. We learn in multivariable calculus, that F is differentiable at (x_0, y_0) if the partial derivatives of u and v exist in a neighborhood of (x_0, y_0) and are continuous at (x_0, y_0) . Hence we get as a Corollary of problem #5, with f, u and v defined as above, that if u and v have continuous partial derivatives in a neighborhood of (x_0, y_0) and if the Cauchy-Riemann equations hold at z_0 , then $f'(z_0)$ exists. Use this observation in problem #6.

6. Define $\exp: \mathbf{C} \to \mathbf{C}$ by $\exp(x + iy) = e^x (\cos(y) + i\sin(y))$. Show that $\exp \in H(\mathbf{C})$ and $\exp'(z) = \exp(z)$ for all $z \in \mathbf{C}$.

If Ω is open in **C** or \mathbb{R}^2 , then we say $u : \Omega \to \mathbb{R}$ is *harmonic* if it has continuous second partial derivatives and if it is a solution to Laplace's equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$$
 (L)

7. Suppose that $f \in H(\Omega)$. Let $u(x, y) = \operatorname{Re}(f(x+iy))$. Show that u is harmonic in Ω .

8. Suppose that $u: \Omega \to \mathbf{R}$ is harmonic. We say $v: \Omega \to \mathbf{R}$ is a harmonic conjugate for u if f(x+iy) = u(x,y) + iv(x,y) defines a holomorphic function on Ω . Find all harmonic conjugates for u(x,y) = 2xy.

For the purposes of this assignment only, we'll call a region Ω a *SC region* if every $f \in H(\Omega)$ has an antiderivative in Ω . For example, we have shown in lecture that every convex region is a SC region. Later, I hope that we'll see that any simply connected region is a SC region. In fact, a region is a SC-region if and only if it is simply connected.

9. Suppose that Ω is a SC region and that u is harmonic in Ω . Show that u has a harmonic conjugate in Ω . (Hint: we need to find a function $f \in H(\Omega)$ such that $u = \operatorname{Re}(f)$. However, let $g = u_x - iu_y$. Show that $g \in H(\Omega)$ and consider an anti-derivative f for g in Ω . You may use without proof the fact that if $w : \Omega \to \mathbf{R}$ is continuous and $w_x \equiv 0 \equiv w_y$ in Ω , then w is constant.)

If $u = \operatorname{Re}(f)$, then $u_x = \operatorname{Re}(f')$ and $u_y = \operatorname{Re}(-if')$. Thus, it is a consequence of question #9 that every harmonic function has continuous partial derivatives of all orders.

10. Just as in question #6, we'll be fancy and write $\exp(z)$ in place of e^z . Suppose that Ω is a SC region and that $0 \notin \Omega$. Then show there is a $f \in H(\Omega)$ such that

$$\exp(f(z)) = z.$$

We call f a branch of $\log(z)$ in Ω . (Hint: start by letting f be an antiderivative of 1/z. and recall that $\exp(z) = a$ has infinitely many solutions for all $a \neq 0$.)

11. Show that f(z) = 1/z can't have an antiderivative in the punctured complex plane $\mathbf{C}^* := \mathbf{C} \setminus \{0\}$. Conclude that there is no (holomorphic) branch of log z in \mathbf{C}^* .

12. Work problems 3, 4, 5, 13 and 20 on pages 227–230 of your text (at the end of Chapter 10.)

HINT FOR #4: Estimate $|f^{k+1}(z)|$.

HINT FOR #5: The hypotheses of the problem don't allow us to conclude even that the limit function $f = \lim_n f_n$ is continuous. Instead, you'll have to prove that $\{f_n\}$ is uniformly Cauchy. You may want to use (and prove) that if $g_n(z) \leq M$ for all $z \in \gamma^*$ and g_n converges pointwise to a 0, then

$$\int_{\gamma} g(z) \, dz \to 0.$$

HINT FOR #20: Notice that $f'_n \to f'$ uniformly on compact subsets of Ω . Show this implies $f'_n/f_n \to f'/f$ uniformly on any γ^* provided $f \neq 0$ on γ^* .