## Math 73/103: Homework on the Cauchy-Riemann Equations

- Problems 1-6 are due Monday, November 21, 2011.
- Problems 7-11 are just for your edification. (But just might appear on some sort of final exam.)
- The remaining problems are due the last day of class, Monday, November 30, 2011.

1. Suppose that $\Omega$ is a region in $\mathbf{C}$, and that $f \in H(\Omega)$. Show that if $f^{\prime}(z)=0$ for all $z \in \Omega$, then $f$ is constant.

Let $\Omega$ be a domain in $\mathbf{C}$ and assume that $f: \Omega \rightarrow \mathbf{C}$ is a function. Of course, we can view $\Omega$ as an open subset of $\mathbf{R}^{2}$ and define $u, v: \Omega \rightarrow \mathbf{R}$ by

$$
u(x, y):=\operatorname{Re}(f(x+i y)) \quad \text { and } \quad v(x, y)=\operatorname{Im}(f(x+i y))
$$

We say that the Cauchy-Riemann Equations hold at $z_{0}=x_{0}+i y_{0}$ if the partial derivatives of $u$ and $v$ exist at $\left(x_{0}, y_{0}\right)$ and

$$
\begin{equation*}
u_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right) \quad \text { and } \quad u_{y}\left(x_{0}, y_{0}\right)=-v_{x}\left(x_{0}, y_{0}\right) . \tag{CR}
\end{equation*}
$$

We often abuse notation slightly, and say that (CR) amounts to $f_{y}\left(z_{0}\right)=i f_{x}\left(z_{0}\right)$. (Just to be specific, $f_{x}\left(x_{0}+i y_{0}\right):=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)$. $)$
2. Suppose that $f^{\prime}\left(z_{0}\right)$ exists. Show that

$$
\begin{equation*}
f_{x}\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=-i f_{y}\left(z_{0}\right) . \tag{1}
\end{equation*}
$$

Conclude that the Cauchy-Riemann equations hold at $z_{0}$ whenever $f^{\prime}\left(z_{0}\right)$ exists. Verify (1) when $f(z)=z^{2}$.
3. Suppose that $\Omega$ is a region and $f \in H(\Omega)$. Show that if $f$ is real-valued in $\Omega$, then $f$ is constant.
4. Suppose that $\Omega$ is a region and $f \in H(\Omega)$. Suppose that $z \mapsto|f(z)|$ is constant on $\Omega$. Show that $f$ must be constant. (Consider $|f(z)|^{2}$.)

We let $f, u, v$ and $\Omega$ be as above. Define

$$
F: \Omega \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{2} \quad \text { by } \quad F(x, y)=(u(x, y), v(x, y))
$$

Pretend that you remember that $F$ is differentiable at $\left(x_{0}, y_{0}\right) \in \Omega$ if there is a linear function $L: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ such that

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-L(h, k)\right\|}{\|(h, k)\|}=0
$$

in which case, the partials of $u$ and $v$ must exist and $L$ is given by the Jacobian Matrix

$$
[L]=\left(\begin{array}{ll}
u_{x}\left(x_{0}, y_{0}\right) & u_{y}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & v_{y}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

(Of course, here $\|(x, y)\|=\sqrt{x^{2}+y^{2}}=|x+i y|$.)
5. Let $f, F, u, v$ and $\Omega$ be as above. Let $z_{0}=x_{0}+i y_{0} \in \Omega$. Show that $f^{\prime}\left(z_{0}\right)$ exists if and only if the Cauchy-Riemann equations hold at $z_{0}$ and $F$ is differentiable at $\left(x_{0}, y_{0}\right)$. (Hint: if we let $z=h+i k$ and if $T$ is given by the matrix

$$
[T]=\left(\begin{array}{rr}
u_{x}\left(x_{0}, y_{0}\right) & -v_{x}\left(x_{0}, y_{0}\right) \\
v_{x}\left(x_{0}, y_{0}\right) & u_{x}\left(x_{0}, y_{0}\right)
\end{array}\right)
$$

then

$$
\left\|F\left(x_{0}+h, y_{0}+k\right)-F\left(x_{0}, y_{0}\right)-T(h, k)\right\|=\left|f\left(z+z_{0}\right)-f\left(z_{0}\right)-\omega z\right|,
$$

where $\omega=u_{x}\left(x_{0}, y_{0}\right)+i v_{x}\left(x_{0}, y_{0}\right)=f_{x}\left(z_{0}\right)$. Then remember (1).)
Problem \#5 has an important Corollary. We learn in multivariable calculus, that $F$ is differentiable at $\left(x_{0}, y_{0}\right)$ if the partial derivatives of $u$ and $v$ exist in a neighborhood of ( $x_{0}, y_{0}$ ) and are continuous at $\left(x_{0}, y_{0}\right)$. Hence we get as a Corollary of problem \#5, with $f, u$ and $v$ defined as above, that if $u$ and $v$ have continuous partial derivatives in a neighborhood of $\left(x_{0}, y_{0}\right)$ and if the Cauchy-Riemann equations hold at $z_{0}$, then $f^{\prime}\left(z_{0}\right)$ exists. Use this observation in problem $\# 6$.
6. Define $\exp : \mathbf{C} \rightarrow \mathbf{C}$ by $\exp (x+i y)=e^{x}(\cos (y)+i \sin (y))$. Show that $\exp \in H(\mathbf{C})$ and $\exp ^{\prime}(z)=\exp (z)$ for all $z \in \mathbf{C}$.

If $\Omega$ is open in $\mathbf{C}$ or $\mathbf{R}^{2}$, then we say $u: \Omega \rightarrow \mathbf{R}$ is harmonic if it has continuous second partial derivatives and if it is a solution to Laplace's equation:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{L}
\end{equation*}
$$

7. Suppose that $f \in H(\Omega)$. Let $u(x, y)=\operatorname{Re}(f(x+i y))$. Show that $u$ is harmonic in $\Omega$.
8. Suppose that $u: \Omega \rightarrow \mathbf{R}$ is harmonic. We say $v: \Omega \rightarrow \mathbf{R}$ is a harmonic conjugate for $u$ if $f(x+i y)=u(x, y)+i v(x, y)$ defines a holomorphic function on $\Omega$. Find all harmonic conjugates for $u(x, y)=2 x y$.

For the purposes of this assignment only, we'll call a region $\Omega$ a $S C$ region if every $f \in H(\Omega)$ has an antiderivative in $\Omega$. For example, we have shown in lecture that every convex region is a SC region. Later, I hope that we'll see that any simply connected region is a SC region. In fact, a region is a SC-region if and only if it is simply connected.
9. Suppose that $\Omega$ is a SC region and that $u$ is harmonic in $\Omega$. Show that $u$ has a harmonic conjugate in $\Omega$. (Hint: we need to find a function $f \in H(\Omega)$ such that $u=\operatorname{Re}(f)$. However, let $g=u_{x}-i u_{y}$. Show that $g \in H(\Omega)$ and consider an anti-derivative $f$ for $g$ in $\Omega$. You may use without proof the fact that if $w: \Omega \rightarrow \mathbf{R}$ is continuous and $w_{x} \equiv 0 \equiv w_{y}$ in $\Omega$, then $w$ is constant.)

If $u=\operatorname{Re}(f)$, then $u_{x}=\operatorname{Re}\left(f^{\prime}\right)$ and $u_{y}=\operatorname{Re}\left(-i f^{\prime}\right)$. Thus, it is a consequence of question $\# 9$ that every harmonic function has continuous partial derivatives of all orders.
10. Just as in question $\# 6$, we'll be fancy and write $\exp (z)$ in place of $e^{z}$. Suppose that $\Omega$ is a SC region and that $0 \notin \Omega$. Then show there is a $f \in H(\Omega)$ such that

$$
\exp (f(z))=z
$$

We call $f$ a branch of $\log (z)$ in $\Omega$. (Hint: start by letting $f$ be an antiderivative of $1 / z$. and recall that $\exp (z)=a$ has infinitely many solutions for all $a \neq 0$.)
11. Show that $f(z)=1 / z$ can't have an antiderivative in the punctured complex plane $\mathbf{C}^{*}:=\mathbf{C} \backslash\{0\}$. Conclude that there is no (holomorphic) branch of $\log z$ in $\mathbf{C}^{*}$.
12. Work problems $3,4,5,13$ and 20 on pages $227-230$ of your text (at the end of Chapter 10.)

Hint for \#4: Estimate $\left|f^{k+1}(z)\right|$.
Hint for \#5: The hypotheses of the problem don't allow us to conclude even that the limit function $f=\lim _{n} f_{n}$ is continuous. Instead, you'll have to prove that $\left\{f_{n}\right\}$ is uniformly Cauchy. You may want to use (and prove) that if $g_{n}(z) \leq M$ for all $z \in \gamma^{*}$ and $g_{n}$ converges pointwise to a 0 , then

$$
\int_{\gamma} g(z) d z \rightarrow 0 .
$$

Hint for $\# 20$ : Notice that $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of $\Omega$. Show this implies $f_{n}^{\prime} / f_{n} \rightarrow f^{\prime} / f$ uniformly on any $\gamma^{*}$ provided $f \neq 0$ on $\gamma^{*}$.

